Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8(7), 506514 (2014).
2. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
3. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature 499(7458), 316319 (2013).
4. M. Z. Liu, M. B. Johnston, and H. J. Snaith, Nature 501(7467), 395398 (2013).
5. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26(10), 15841589 (2014).
6. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342(6156), 341344 (2013).
7. G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342(6156), 344347 (2013).
8. D. Shi, V. Adinolfi, R. Comin, M. J. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, Science 347(6221), 519522 (2015).
9. G. C. Xing, N. Mathews, S. S. Lim, N. Yantara, X. F. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Nat. Mater. 13(5), 476480 (2014).
10. N. G. Park, Mater. Today 18(2), 6572 (2015).
11. W. Shockley and H. J. Queisser, J. Appl. Phys. 32(3), 510 (1961).
12. A. Devos, J. Phys. D: Appl. Phys. 13(5), 839846 (1980).
13. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, IEEE Trans. Electron Devices 31(5), 711716 (1984).
14. U. Rau and R. Brendel, J. Appl. Phys. 84(11), 64126418 (1998).
15. A. S. Brown and M. A. Green, Physica E 14(1–2), 96100 (2002).
16. V. I. Klimov, Appl. Phys. Lett. 89(12), 123118 (2006).
17. T. Kirchartz, J. Mattheis, and U. Rau, Phys. Rev. B 78(23), 235320 (2008).
18. H. J. Queisser, Mater. Sci. Eng., B 159–160, 322328 (2009).
19. C. C. Lin, W. L. Liu, and C. Y. Shih, Opt. Express 19(18), 1692716933 (2011).
20. T. Nozawa and Y. Arakawa, Appl. Phys. Lett. 98(17), 171108 (2011).
21. Y. Ahn, Y. H. Kim, and S. I. Kim, IEEE J. Photovoltaics 3(4), 14031408 (2013).
22. A. P. Kirk, Physica B 417, 9495 (2013).
23. S. Sandhu, Z. F. Yu, and S. H. Fan, Opt. Express 21(1), 12091217 (2013).
24. D. T. Moore, B. Gaskey, A. Robbins, and T. Hanrath, J. Appl. Phys. 115(5), 054313 (2014).
25. S. Sandhu, Z. F. Yu, and S. H. Fan, Nano Lett. 14(2), 10111015 (2014).
26. X. Zhai, S. Wu, A. Shang, and X. Li, Appl. Phys. Lett. 106(6), 063904 (2015).
27. K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, Sci. Rep. 4, 6071 (2014).
28. A. Marti, J. L. Balenzategui, and R. F. Reyna, J. Appl. Phys. 82(8), 40674075 (1997).
29. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE J. Photovoltaics 2(3), 303311 (2012).
30. A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, Energy Environ. Sci. 6(5), 14991503 (2013).
31. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, Light: Sci. Appl. 2, e45 (2013).
32. O. Hohn, T. Kraus, G. Bauhuis, U. T. Schwarz, and B. Blasi, Opt. Express 22(9), A715A722 (2014).
33. X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. D. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. L. Li, E. Yablonovitch, and J. A. Rogers, Adv. Energy Mater. 5(1), 1400919 (2015).
34. H. R. Stuart and D. G. Hall, J. Opt. Soc. Am. A 14(11), 30013008 (1997).
35. P. Loper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipic, S. J. Moon, J. H. Yum, M. Topic, S. De Wolf, and C. Ballif, J. Phys. Chem. Lett. 6(1), 6671 (2015).
36.See supplementary material at for refractive index of perovskite material and nonradiative recombination incorporated detailed balance model.[Supplementary Material]
37. D. M. Callahan, J. N. Munday, and H. A. Atwater, Nano Lett. 12(1), 214218 (2012).
38. Z. F. Yu, A. Raman, and S. H. Fan, Proc. Natl. Acad. Sci. U. S. A. 107(41), 1749117496 (2010).
39. M. A. Green, in Solar Energy: The State of the Art, edited by J. Gordon ( James & James (Science Publishers), 2001), Vol. 6.
40. G. J. A. H. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Avila, and H. J. Bolink, Adv. Mater. 27(11), 18371841 (2015).
41. O. Hohn, T. Kraus, U. T. Schwarz, and B. Blasi, J. Appl. Phys. 117(3), 034503 (2015).
42. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, J. Am. Chem. Soc. 136(33), 1161011613 (2014).

Data & Media loading...


Article metrics loading...



With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CHNHPbI) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200 nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd