Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/22/10.1063/1.4922150
1.
1. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8(7), 506514 (2014).
http://dx.doi.org/10.1038/nphoton.2014.134
2.
2. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
3.
3. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature 499(7458), 316319 (2013).
http://dx.doi.org/10.1038/nature12340
4.
4. M. Z. Liu, M. B. Johnston, and H. J. Snaith, Nature 501(7467), 395398 (2013).
http://dx.doi.org/10.1038/nature12509
5.
5. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26(10), 15841589 (2014).
http://dx.doi.org/10.1002/adma.201305172
6.
6. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342(6156), 341344 (2013).
http://dx.doi.org/10.1126/science.1243982
7.
7. G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342(6156), 344347 (2013).
http://dx.doi.org/10.1126/science.1243167
8.
8. D. Shi, V. Adinolfi, R. Comin, M. J. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, Science 347(6221), 519522 (2015).
http://dx.doi.org/10.1126/science.aaa2725
9.
9. G. C. Xing, N. Mathews, S. S. Lim, N. Yantara, X. F. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Nat. Mater. 13(5), 476480 (2014).
http://dx.doi.org/10.1038/nmat3911
10.
10. N. G. Park, Mater. Today 18(2), 6572 (2015).
http://dx.doi.org/10.1016/j.mattod.2014.07.007
11.
11. W. Shockley and H. J. Queisser, J. Appl. Phys. 32(3), 510 (1961).
http://dx.doi.org/10.1063/1.1736034
12.
12. A. Devos, J. Phys. D: Appl. Phys. 13(5), 839846 (1980).
http://dx.doi.org/10.1088/0022-3727/13/5/018
13.
13. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, IEEE Trans. Electron Devices 31(5), 711716 (1984).
http://dx.doi.org/10.1109/T-ED.1984.21594
14.
14. U. Rau and R. Brendel, J. Appl. Phys. 84(11), 64126418 (1998).
http://dx.doi.org/10.1063/1.368968
15.
15. A. S. Brown and M. A. Green, Physica E 14(1–2), 96100 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00364-8
16.
16. V. I. Klimov, Appl. Phys. Lett. 89(12), 123118 (2006).
http://dx.doi.org/10.1063/1.2356314
17.
17. T. Kirchartz, J. Mattheis, and U. Rau, Phys. Rev. B 78(23), 235320 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235320
18.
18. H. J. Queisser, Mater. Sci. Eng., B 159–160, 322328 (2009).
http://dx.doi.org/10.1016/j.mseb.2008.06.033
19.
19. C. C. Lin, W. L. Liu, and C. Y. Shih, Opt. Express 19(18), 1692716933 (2011).
http://dx.doi.org/10.1364/OE.19.016927
20.
20. T. Nozawa and Y. Arakawa, Appl. Phys. Lett. 98(17), 171108 (2011).
http://dx.doi.org/10.1063/1.3583587
21.
21. Y. Ahn, Y. H. Kim, and S. I. Kim, IEEE J. Photovoltaics 3(4), 14031408 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2013.2262373
22.
22. A. P. Kirk, Physica B 417, 9495 (2013).
http://dx.doi.org/10.1016/j.physb.2013.01.017
23.
23. S. Sandhu, Z. F. Yu, and S. H. Fan, Opt. Express 21(1), 12091217 (2013).
http://dx.doi.org/10.1364/OE.21.001209
24.
24. D. T. Moore, B. Gaskey, A. Robbins, and T. Hanrath, J. Appl. Phys. 115(5), 054313 (2014).
http://dx.doi.org/10.1063/1.4864066
25.
25. S. Sandhu, Z. F. Yu, and S. H. Fan, Nano Lett. 14(2), 10111015 (2014).
http://dx.doi.org/10.1021/nl404501w
26.
26. X. Zhai, S. Wu, A. Shang, and X. Li, Appl. Phys. Lett. 106(6), 063904 (2015).
http://dx.doi.org/10.1063/1.4908294
27.
27. K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, and H. J. Bolink, Sci. Rep. 4, 6071 (2014).
http://dx.doi.org/10.1038/srep06071
28.
28. A. Marti, J. L. Balenzategui, and R. F. Reyna, J. Appl. Phys. 82(8), 40674075 (1997).
http://dx.doi.org/10.1063/1.365717
29.
29. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE J. Photovoltaics 2(3), 303311 (2012).
http://dx.doi.org/10.1109/JPHOTOV.2012.2198434
30.
30. A. Braun, E. A. Katz, D. Feuermann, B. M. Kayes, and J. M. Gordon, Energy Environ. Sci. 6(5), 14991503 (2013).
http://dx.doi.org/10.1039/c3ee40377g
31.
31. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, Light: Sci. Appl. 2, e45 (2013).
http://dx.doi.org/10.1038/lsa.2013.1
32.
32. O. Hohn, T. Kraus, G. Bauhuis, U. T. Schwarz, and B. Blasi, Opt. Express 22(9), A715A722 (2014).
http://dx.doi.org/10.1364/OE.22.00A715
33.
33. X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen, S. D. Wang, W. L. Wilson, J. Y. Kim, P. Ferreira, X. L. Li, E. Yablonovitch, and J. A. Rogers, Adv. Energy Mater. 5(1), 1400919 (2015).
http://dx.doi.org/10.1002/aenm.201400919
34.
34. H. R. Stuart and D. G. Hall, J. Opt. Soc. Am. A 14(11), 30013008 (1997).
http://dx.doi.org/10.1364/JOSAA.14.003001
35.
35. P. Loper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipic, S. J. Moon, J. H. Yum, M. Topic, S. De Wolf, and C. Ballif, J. Phys. Chem. Lett. 6(1), 6671 (2015).
http://dx.doi.org/10.1021/jz502471h
36.
36.See supplementary material at http://dx.doi.org/10.1063/1.4922150 for refractive index of perovskite material and nonradiative recombination incorporated detailed balance model.[Supplementary Material]
37.
37. D. M. Callahan, J. N. Munday, and H. A. Atwater, Nano Lett. 12(1), 214218 (2012).
http://dx.doi.org/10.1021/nl203351k
38.
38. Z. F. Yu, A. Raman, and S. H. Fan, Proc. Natl. Acad. Sci. U. S. A. 107(41), 1749117496 (2010).
http://dx.doi.org/10.1073/pnas.1008296107
39.
39. M. A. Green, in Solar Energy: The State of the Art, edited by J. Gordon ( James & James (Science Publishers), 2001), Vol. 6.
40.
40. G. J. A. H. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Avila, and H. J. Bolink, Adv. Mater. 27(11), 18371841 (2015).
http://dx.doi.org/10.1002/adma.201405372
41.
41. O. Hohn, T. Kraus, U. T. Schwarz, and B. Blasi, J. Appl. Phys. 117(3), 034503 (2015).
http://dx.doi.org/10.1063/1.4905956
42.
42. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, J. Am. Chem. Soc. 136(33), 1161011613 (2014).
http://dx.doi.org/10.1021/ja506624n
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/22/10.1063/1.4922150
Loading
/content/aip/journal/apl/106/22/10.1063/1.4922150
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/22/10.1063/1.4922150
2015-06-02
2016-12-06

Abstract

With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CHNHPbI) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200 nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/22/1.4922150.html;jsessionid=JI3NCmZOzFg1FjmLhO5QsrQl.x-aip-live-03?itemId=/content/aip/journal/apl/106/22/10.1063/1.4922150&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/22/10.1063/1.4922150&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/22/10.1063/1.4922150'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,