Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/22/10.1063/1.4922191
1.
1. J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, Adv. Mater. 23, 1810 (2011).
http://dx.doi.org/10.1002/adma.20100399
2.
2. D. H. Wang, J. Seifter, J. H. Park, D. Choi, and A. J. Heeger, Adv. Energy Mater. 2, 1319 (2012).
http://dx.doi.org/10.1002/aenm.201200349
3.
3. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, Adv. Mater. 22, 3839 (2010).
http://dx.doi.org/10.1002/adma.200903697
4.
4. Z. Tang, Z. George, Z. Ma, J. Bergqvist, K. Tvingstedt, K. Vandewal, E. Wang, L. M. Andersson, M. R. Andersson, F. Zhang, and O. Inganäs, Adv. Energy Mater. 2, 1467 (2012).
http://dx.doi.org/10.1002/aenm.201200204
5.
5. J. Meiss, T. Menke, K. Leo, C. Uhrich, W. Gnehr, S. Sonntag, M. Pfeiffer, and M. Riede, Appl. Phys. Lett. 99, 043301 (2011).
http://dx.doi.org/10.1063/1.3610551
6.
6. F. Robert, Science 332, 293 (2011).
http://dx.doi.org/10.1126/science.332.6027.293
7.
7. Y. F. Li and Y. P. Zou, Adv. Mater. 20, 2952 (2008).
http://dx.doi.org/10.1002/adma.200800606
8.
8. G. Li, R. Zhu, and Y. Yang, Nat. Photonics 6, 153 (2012).
http://dx.doi.org/10.1038/nphoton.2012.11
9.
9. S. R. Forrest, MRS Bull. 30, 28 (2005).
http://dx.doi.org/10.1557/mrs2005.5
10.
10. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, Adv. Mater. 25, 2385 (2013).
http://dx.doi.org/10.1002/adma.201203323
11.
11. E. Stratakis and E. Kymakis, Mater. Today 16, 133 (2013).
http://dx.doi.org/10.1016/j.mattod.2013.04.006
12.
12. J. Gilot, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 22, E67 (2010).
http://dx.doi.org/10.1002/adma.200902398
13.
13. A. Hadipour, B. Boer, and P. W. M. Blom, Adv. Funct. Mater. 18, 169 (2008).
http://dx.doi.org/10.1002/adfm.200700517
14.
14. S. M. Menke, W. A. Luhman, and R. J. Holmes, Nat. Mater. 12, 152 (2013).
http://dx.doi.org/10.1038/nmat3467
15.
15. T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, Appl. Phys. Lett. 91, 93506 (2007).
http://dx.doi.org/10.1063/1.2772173
16.
16. L. Z. Yu, X. Y. Jiang, Z. L. Zhang, L. R. Lou, and C. T. Lee, J. Appl. Phys. 105, 013105 (2009).
http://dx.doi.org/10.1063/1.3039412
17.
17. F. Lia, J. L. Lin, J. Feng, G. Cheng, H. Y. Liu, S. Y. Liu, L. G. Zhang, X. F. Zhang, and S. T. Lee, Synth. Met. 139, 341 (2003).
http://dx.doi.org/10.1016/S0379-6779(03)00184-X
18.
18. P. Andrew and W. L. Barnes, Science 306, 1002 (2004).
http://dx.doi.org/10.1126/science.1102992
19.
19. J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, Appl. Phys. Lett. 93, 051106 (2008).
http://dx.doi.org/10.1063/1.2968309
20.
20. Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, Appl. Phys. Lett. 101, 163303 (2012).
http://dx.doi.org/10.1063/1.4761947
21.
21. Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, Adv. Opt. Mater. 1, 809 (2013).
http://dx.doi.org/10.1002/adom.201300223
22.
22. S. Kim, J. H. Koh, X. Yang, W. S. Chi, C. Park, J. W. Leem, B. Kim, S. Seo, Y. Kim, J. S. Yu, J. H. Kim, and E. Kim, Adv. Energy Mater. 4, 1301338 (2014).
http://dx.doi.org/10.1002/aenm.201301338
23.
23. J. W. Leem, S. Kim, S. H. Lee, J. A. Rogers, E. Kim, and A. S. Yu, Adv. Energy Mater. 4, 1301315 (2014).
http://dx.doi.org/10.1002/aenm.201301315
24.
24. Y. Jin, J. Feng, X.-L. Zhang, Y.-G. Bi, Y. Bai, L. Chen, T. Lan, Y.-F. Liu, Q.-D. Chen, and H.-B. Sun, Adv. Mater. 24, 1187 (2012).
http://dx.doi.org/10.1002/adma.201103397
25.
25. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and A. T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.107401
26.
26. X. L. Zhang, J. Feng, X. B. L. J. F. Song, and A. H. B. Sun, Opt. Lett. 36, 3915 (2011).
http://dx.doi.org/10.1364/OL.36.003915
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/22/10.1063/1.4922191
Loading
/content/aip/journal/apl/106/22/10.1063/1.4922191
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/22/10.1063/1.4922191
2015-06-05
2016-09-30

Abstract

We demonstrated a strategy to realize broadband enhanced absorption in the top-incident inverted organic solar cells (OSCs) by employing an external antenna layer on top of the periodic corrugated metallic anode. Surface-plasmon polaritons (SPPs) are excited on the opposite interfaces of the periodic corrugated metallic anode, which mediate the energy transfer from the antenna layer to the active layer through the anode. The absorption of the OSCs is significantly broadened and enhanced by tuning the SPP resonance to coincide with both the emission of the antenna and the absorption of the active material. The power conversion efficiency exhibits an enhancement of 16% compared to that of the OSCs without the antenna layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/22/1.4922191.html;jsessionid=MC1Lo4dIUQlz5QLvhgjNnkQ6.x-aip-live-02?itemId=/content/aip/journal/apl/106/22/10.1063/1.4922191&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/22/10.1063/1.4922191&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/22/10.1063/1.4922191'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,