Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/22/10.1063/1.4922194
1.
1. S. Megahed and B. Scrosati, J. Power Sources 51, 79 (1994).
http://dx.doi.org/10.1016/0378-7753(94)01956-8
2.
2. D. Tobjork, N. Kaihovirta, T. Makela, F. Pettersson, and R. Osterbacka, Org. Electron. 9, 931 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.06.016
3.
3. M. P. Walser, W. L. Kalb, T. Mathis, and B. Batlogg, Appl. Phys. Lett. 95, 233301 (2009).
http://dx.doi.org/10.1063/1.3267055
4.
4. U. Zschieschang, F. Ante, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, K. Kern, and H. Klauk, Adv. Mater. 22, 982 (2010).
http://dx.doi.org/10.1002/adma.200902740
5.
5. P. Cosseddu, S. Lai, M. Barbaro, and A. Bonfiglio, Appl. Phys. Lett. 100, 093305 (2012).
http://dx.doi.org/10.1063/1.3691181
6.
6. A. Luzio, F. G. Ferré, F. Di Fonzo, and M. Caironi, Adv. Funct. Mater. 24, 1790 (2014).
http://dx.doi.org/10.1002/adfm.201302428
7.
7. X. Cheng, M. Caironi, Y.-Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, Chem. Mater. 22, 1559 (2010).
http://dx.doi.org/10.1021/cm902929b
8.
8. M. H. Yoon, H. Yan, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 127, 10388 (2005).
http://dx.doi.org/10.1021/ja052488f
9.
9. W. Kang, M. Kitamura, and Y. Arakawa, Org. Electron. 14, 644 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.11.009
10.
10. M. Halik, H. Klauk, U. Zschieschang, S. Maisch, F. Effenberger, C. Dehm, M. Schu, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
http://dx.doi.org/10.1038/nature02987
11.
11. M. Yoon, A. Facchetti, and T. J. Marks, Proc. Natl. Acad. Sci, USA 102(13), 4678 (2005).
http://dx.doi.org/10.1073/pnas.0501027102
12.
12. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature 445, 745 (2007).
http://dx.doi.org/10.1038/nature05533
13.
13. L. Herlogsson, M. Cölle, S. Tierney, X. Crispin, and M. Berggren, Adv. Mater. 22, 72 (2010).
http://dx.doi.org/10.1002/adma.200901850
14.
14. D. Braga, N. C. Erickson, M. J. Renn, R. J. Holmes, and C. D. Frisbie, Adv. Funct. Mater. 22, 1623 (2012).
http://dx.doi.org/10.1002/adfm.201102075
15.
15. J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nat. Mater. 7, 900 (2008).
http://dx.doi.org/10.1038/nmat2291
16.
16. J. W. Ward, Z. A. Lamport, and O. D. Jurchescu, ChemPhysChem 16, 1118 (2015).
http://dx.doi.org/10.1002/cphc.201402757
17.
17. M. M. Voigt, A. Cuite, D. Y. Chung, R. U. a. Khan, A. J. Campbell, D. D. C. Bradley, F. Meng, J. H. G. Steinke, S. Tierney, L. McCulloch, H. Penxten, L. Luisen, O. Douheret, J. Manca, U. Brokmann, K. Sönnichsen, D. Hülsenberg, W. Bock, C. Barron, N. Blanckaert, S. Springer, J. Grupp, and A. Mcsley, Adv. Funct. Mater. 20, 239 (2010).
http://dx.doi.org/10.1002/adfm.200901597
18.
18. H. Kang, R. Kitsomboonloha, J. Jang, and V. Subramanian, Adv. Mater. 24, 3065 (2012).
http://dx.doi.org/10.1002/adma.201200924
19.
19. S. Chung, S. O. Kim, S. K. Kwon, C. Lee, and Y. Hong, IEEE Electron Device Lett. 32, 1134 (2011).
http://dx.doi.org/10.1109/LED.2011.2156757
20.
20. N. A. Azarova, J. W. Owen, C. A. McLellan, M. A. Grimminger, E. K. Chapman, J. E. Anthony, and O. D. Jurchescu, Org. Electron. 11, 1960 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.09.008
21.
21. C. K. Chan, L. J. Richter, B. Dinardo, C. Jaye, B. R. Conrad, H. W. Ro, D. S. Germack, D. A. Fischer, D. M. DeLongchamp, and D. J. Gundlach, Appl. Phys. Lett. 96, 133304 (2010).
http://dx.doi.org/10.1063/1.3360230
22.
22. X. Yu, N. Zhou, S. Han, H. Lin, D. B. Buchholz, J. Yu, R. P. H. Chang, T. J. Marks, and A. Facchetti, J. Mater. Chem. C 1, 6532 (2013).
http://dx.doi.org/10.1039/c3tc31412j
23.
23. Y. Mei, M. A. Loth, M. Payne, W. Zhang, J. Smith, C. S. Day, S. R. Parkin, M. Heeney, I. McCulloch, T. D. Anthopoulos, J. E. Anthony, and O. D. Jurchescu, Adv. Mater. 25, 4352 (2013).
http://dx.doi.org/10.1002/adma.201205371
24.
24. S. Bose, S. S. Keller, T. S. Alstrøm, A. Boisen, and K. Almdal, Langmuir 29, 6911 (2013).
http://dx.doi.org/10.1021/la4010246
25.
25. J. Smith, R. Hamilton, Y. Qi, A. Kahn, D. D. C. Bradley, M. Heeney, I. McCulloch, and T. D. Anthopoulos, Adv. Funct. Mater. 20, 2330 (2010).
http://dx.doi.org/10.1002/adfm.201000427
26.
26. S. Hunter and T. D. Anthopoulos, Adv. Mater. 25, 4320 (2013).
http://dx.doi.org/10.1002/adma.201300020
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4922194 for further experimental data obtained.[Supplementary Material]
28.
28. P. J. Diemer, C. R. Lyle, Y. Mei, C. Sutton, M. M. Payne, J. E. Anthony, V. Coropceanu, J.-L. Brédas, and O. D. Jurchescu, Adv. Mater. 25, 6956 (2013).
http://dx.doi.org/10.1002/adma.201302838
29.
29. J. Smith, W. Zhang, R. Sougrat, K. Zhao, R. Li, D. Cha, A. Amassian, M. Heeney, I. McCulloch, and T. D. Anthopoulos, Adv. Mater. 24, 2441 (2012).
http://dx.doi.org/10.1002/adma.201200088
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/22/10.1063/1.4922194
Loading
/content/aip/journal/apl/106/22/10.1063/1.4922194
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/22/10.1063/1.4922194
2015-06-05
2016-09-28

Abstract

Organic thin-film electronics have long been considered an enticing candidate in achieving high-throughput manufacturing of low-power ubiquitous electronics. However, to achieve this goal, more work is required to reduce operating voltages and develop suitable mass-manufacture techniques. Here, we demonstrate low-voltage spray-cast organic thin-film transistors based on a semiconductor blend of 2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene and poly(triarylamine). Both semiconductor and dielectric films are deposited via successive spray deposition in ambient conditions (air with 40%–60% relative humidity) without any special precautions. Despite the simplicity of the deposition method, p-channel transistors with hole mobilities of >1 cm2/Vs are realized at −4 V operation, and unipolar inverters operating at −6 V are demonstrated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/22/1.4922194.html;jsessionid=oLAm-j4odZKZBRPJQGxARljh.x-aip-live-03?itemId=/content/aip/journal/apl/106/22/10.1063/1.4922194&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/22/10.1063/1.4922194&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/22/10.1063/1.4922194'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,