Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. J. Grassmann, J. A. Carlin, B. Galiana, L.-M. Yang, F. Yaang, M. J. Mills, and S. A. Ringel, Appl. Phys. Lett. 102, 142102 (2013).
2. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, J. Cryst. Growth 315, 37 (2011).
3. Y. B. Bolkhovityanov and O. P. Pchelyakov, Open Nanosci. J. 3, 20 (2009).
4. P. D. Hodson, P. Knightley, R. C. Goodfellow, T. B. Joyce, J. R. Riffat, R. R. Bradlay, and R. J. M. Griffiths, Semicond. Sci. Technol. 3, 715 (1988).
5. E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, and P. D. Kirchner, J. Appl. Phys. 65, 2220 (1989).
6. B.-Y. Tsaur, R. W. Clelland, J. C. C. Fan, R. P. Gale, J. P. Salerno, B. A. Vojak, and C. O. Bozler, Appl. Phys. Lett. 41, 347 (1982).
7. D. Pribat, V. Provendier, M. Dupuy, P. Legagneux, and C. Collet, Jpn. J. Appl. Phys., Part 2 30, L431 (1991).
8. A. M. Rocher, Solid State Phenom. 19–20, 563 (1991).
9. P. Zaumseil, Y. Yamamoto, A. Bauer, M. A. Schubert, and T. Schroeder, J. Appl. Phys. 109, 023511 (2011).
10. K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, Nanotechnology 20, 145302 (2009).
11. P. Das Kanungo, H. Schmid, M. T. Björk, L. M. Gignac, C. Breslin, J. Bruley, C. D. Bessire, and H. Riel, Nanotechnology 24(22), 225304 (2013).
12. M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, Nano Lett. 14(4), 1914 (2014).
13. L. Haji, P. Joubert, J. Stoemenos, and N. A. Economou, J. Appl. Phys. 75, 3944 (1994).
14. R. Ishihara, P. Ch. Van der Wilt, B. D. Van Dijk, A. Burtsev, J. W. Metselaar, and C. I. M. Beenakker, Thin Solid Films 427, 77 (2003).
15. B. Leung, J. Song, Y. Zhang, and J. Han, Adv. Mater. 25, 1285 (2013).
16. W. W. Fang, N. Singh, L. K. Bera, H. S. Nguyen, S. C. Rustagi, G. Q. Lo, N. Balsubramanian, and D.-L. Kwong, IEEE Electron Device Lett. 28, 211 (2007).
17. M. Borg, H. Schmid, K. E. Moselund, D. Cutaia, and H. Riel, J. Appl. Phys 117, 144303 (2015).
18. Y. Chen, J. C. Hermansin, and G. J. Lapeyre, Phys. Rev. B 39, 12682 (1989).
19. Ch. Blömers, T. Grap, M. I. Lepsa, J. Moers, St. Trellenkamp, D. Grützmacher, H. Lüth, and Th. Schäpers, Appl. Phys. Lett. 101, 152106 (2012).
20. Z. Cui, R. Perumal, T. Ishikura, K. Konishi, K. Yoh, and J. Motohisa, Appl. Phys. Express 7, 085001 (2014).
21. H. Takita, N. Hashimoto, C. T. Nguyen, M. Kudo, and M. Akabori, Appl. Phys. Lett. 97, 012102 (2010).
22. R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, IEEE Trans. Nanotechnol. 4, 153 (2005).
23. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S.-Y. Chen, M. Madsen, A. C. Ford, Y.-L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, Nature 468, 286 (2010).
24. E. Lind, Y.-M. Niquet, H. Mera, and L. E. Wernersson, Appl. Phys. Lett. 96, 233507 (2010).

Data & Media loading...


Article metrics loading...



III–V nanoscale devices were monolithically integrated on silicon-on-insulator (SOI) substrates by template-assisted selective epitaxy (TASE) using metal organic chemical vapor deposition. Single crystal III–V (InAs, InGaAs, GaAs) nanostructures, such as nanowires, nanostructures containing constrictions, and cross junctions, as well as 3D stacked nanowires were directly obtained by epitaxial filling of lithographically defined oxide templates. The benefit of TASE is exemplified by the straightforward fabrication of nanoscale Hall structures as well as multiple gate field effect transistors (MuG-FETs) grown co-planar to the SOI layer. Hall measurements on InAs nanowire cross junctions revealed an electron mobility of 5400 cm2/V s, while the alongside fabricated InAs MuG-FETs with ten 55 nm wide, 23 nm thick, and 390 nm long channels exhibit an on current of 660 μA/μm and a peak transconductance of 1.0 mS/μm at VDS = 0.5 V. These results demonstrate TASE as a promising fabrication approach for heterogeneous material integration on Si.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd