Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/23/10.1063/1.4922422
1.
1. J. H. Bae, S. D. Lee, and C. J. Yu, Solid-State Electron. 79, 98 (2013).
http://dx.doi.org/10.1016/j.sse.2012.07.010
2.
2. C. Celle, C. Suspène, M. Ternisien, S. Lenfant, D. Guérin, K. Smaali, K. Lmimouni, J. Simonato, and D. Vuillaume, Org. Electron. 15, 729 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.01.003
3.
3. L.-Y. Chiu, H.-L. Cheng, W.-Y. Chou, and F.-C. Tang, Appl. Phys. Lett. 103, 193302 (2013).
http://dx.doi.org/10.1063/1.4829060
4.
4. P. Cosseddu, G. Tiddia, S. Milita, and A. Bonfiglio, Org. Electron. 14, 206 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.10.033
5.
5. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
http://dx.doi.org/10.1039/b909902f
6.
6. Y. Xu, C. Liu, H. Sun, F. Balestra, G. Ghibaudo, W. Scheideler, and Y. Y. Noh, Org. Electron. 15, 1738 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.05.006
7.
7. P. Yan, Z. Liu, S. Zhang, D. Liu, X. Wang, S. Yue, and Y. Zhao, APL Mater. 2, 116103 (2014).
http://dx.doi.org/10.1063/1.4901123
8.
8. U. Zschieschang, R. T. Weitz, K. Kern, and H. Klauk, Appl. Phys. A 95, 139 (2009).
http://dx.doi.org/10.1007/s00339-008-5019-8
9.
9. W. S. Hu, Y. T. Tao, Y. F. Chen, and C. S. Chang, Appl. Phys. Lett. 93, 053304 (2008).
http://dx.doi.org/10.1063/1.2960343
10.
10. O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Appl. Phys. Lett. 84, 3061 (2004).
http://dx.doi.org/10.1063/1.1704874
11.
11. N. Ohashi, H. Tomii, M. Sakai, K. Kudo, and M. Nakamura, Appl. Phys. Lett. 96, 203302 (2010).
http://dx.doi.org/10.1063/1.3430041
12.
12. S. Yin and Y. Lv, Org. Electron. 9, 852 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.06.005
13.
13. C. Dimitrakopoulos, J. Appl. Phys. 80, 2501 (1996).
http://dx.doi.org/10.1063/1.363032
14.
14. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras, Chem. Mater. 16, 4497 (2004).
http://dx.doi.org/10.1021/cm049563q
15.
15. M. Ando, T. B. Kehoe, M. Yoneya, H. Ishii, M. Kawasaki, C. M. Duffy, T. Minakata, R. T. Phillips, and H. Sirringhaus, Adv. Mater. 27, 122 (2015).
http://dx.doi.org/10.1002/adma.201403556
16.
16. B. Bräuer, R. Kukreja, A. Virkar, H. B. Akkerman, A. Fognini, T. Tyliszczak, and Z. Bao, Org. Electron. 12, 1936 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.08.007
17.
17. M. Iazykov, M. Erouel, J. Tardy, V. A. Skryshevsky, and M. Phaner-Goutorbe, Surf. Sci. 607, 170 (2013).
http://dx.doi.org/10.1016/j.susc.2012.09.001
18.
18. B. Kang, M. Jang, Y. Chung, H. Kim, S. K. Kwak, J. H. Oh, and K. Cho, Nat. Commun. 5, 4752 (2014).
http://dx.doi.org/10.1038/ncomms5752
19.
19. G. H. Kim, M. Shtein, and K. P. Pipe, Appl. Phys. Lett. 98, 093303 (2011).
http://dx.doi.org/10.1063/1.3556622
20.
20. B. Lucas, A. El Amrani, A. Moliton, A. Skaiky, A. El Hajj, and M. Aldissi, Solid-State Electron. 69, 99 (2012).
http://dx.doi.org/10.1016/j.sse.2011.12.011
21.
21. A. Virkar, S. Mannsfeld, Z. Bao, and N. Stingelin, Adv. Mater. 22, 3857 (2010).
http://dx.doi.org/10.1002/adma.200903193
22.
22. M. McCarthy, B. Liu, R. Jayaraman, S. M. Gilbert, D. Y. Kim, F. So, and A. G. Rinzler, ACS Nano 5, 291 (2011).
http://dx.doi.org/10.1021/nn102721v
23.
23. H. Kleemann, A. A. Günther, K. Leo, and B. Lüssem, Small 9, 3670 (2013).
http://dx.doi.org/10.1002/smll.201202321
24.
24. K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, and K. Kudo, Appl. Phys. Lett. 89, 103525 (2006).
http://dx.doi.org/10.1063/1.2347152
25.
25. H. Naruse, S. Naka, and H. Okada, Appl. Phys. Express 1, 011801 (2008).
http://dx.doi.org/10.1143/APEX.1.011801
26.
26. M. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, and A. G. Rinzler, Science 332, 570 (2011).
http://dx.doi.org/10.1126/science.1203052
27.
27. N. Stutzmann, R. H. Friend, and H. Sirringhaus, Science 299, 1881 (2003).
http://dx.doi.org/10.1126/science.1081279
28.
28. T. Takano, H. Yamauchi, M. Iizuka, M. Nakamura, and K. Kudo, Appl. Phys. Express 2, 071501 (2009).
http://dx.doi.org/10.1143/APEX.2.071501
29.
29. M. Uno, I. Doi, K. Takimiya, and J. Takeya, Appl. Phys. Lett. 94, 103307 (2009).
http://dx.doi.org/10.1063/1.3098404
30.
30. F. Pu, H. Yamauchi, H. Iechi, M. Nakamura, and K. Kudo, Appl. Phys. Express 4, 054203 (2011).
http://dx.doi.org/10.1143/APEX.4.054203
31.
31. J. Widmer, J. Fischer, W. Tress, K. Leo, and M. Riede, Org. Electron. 14, 3460 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.09.021
32.
32. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, 2nd ed. ( Clarendon Press, Oxford, 1950).
33.
33. P. N. Murgatroyd, J. Phys. D. Appl. Phys. 3, 151 (1970).
http://dx.doi.org/10.1088/0022-3727/3/2/308
34.
34. H. Kleemann, C. Schuenemann, A. A. Zakhidov, M. Riede, B. Lüssem, and K. Leo, Org. Electron. 13, 58 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.09.027
35.
35. H. Kleemann, A. A. Zakhidov, M. Anderson, T. Menke, K. Leo, and B. Lüssem, Org. Electron. 13, 506 (2012).
http://dx.doi.org/10.1016/j.orgel.2011.12.009
36.
36. F. Ante, D. Kälblein, U. Zschieschang, T. W. Canzler, A. Werner, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, Small 7, 1186 (2011).
http://dx.doi.org/10.1002/smll.201002254
37.
37. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. ( Wiley-Interscience, Hoboken, NJ, 2007).
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/23/10.1063/1.4922422
Loading
/content/aip/journal/apl/106/23/10.1063/1.4922422
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/23/10.1063/1.4922422
2015-06-09
2016-12-11

Abstract

Pentacene has been extensively studied as an active material for organic field-effect transistors as it shows very good charge carrier mobility along its preferred transport direction. In this contribution, we investigate the hole transport in pentacene thin films by measurement in conventional lateral organic field-effect transistors (OFETs), which yields the hole mobility along the a-b plane of pentacene, and by the recently published potential mapping (POEM) approach, which allows for direct extraction of the charge carrier mobility perpendicular to the substrate, in this case perpendicular to the a-b plane, without the assumption of a specific transport model. While the mobility along the a-b plane—determined from OFET measurements—is found to be in the region of 0.45 cm2/Vs, transport perpendicular to this plane shows an average mobility at least one order of magnitude lower. Investigating also how these effective mobility values depend on the deposition rate of the pentacene films, we find that the decrease in grain size for increasing deposition rate causes the mobility to decrease both parallel and perpendicular to the substrate due to the increased number of grain boundaries to be overcome. For the out-of-plane transport, this effect is found to saturate for deposition rates higher than 2.5 Å/s.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/23/1.4922422.html;jsessionid=eLxVE1pB1YLLoQE1KLnU6d68.x-aip-live-03?itemId=/content/aip/journal/apl/106/23/10.1063/1.4922422&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/23/10.1063/1.4922422&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/23/10.1063/1.4922422'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,