Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. H. Bae, S. D. Lee, and C. J. Yu, Solid-State Electron. 79, 98 (2013).
2. C. Celle, C. Suspène, M. Ternisien, S. Lenfant, D. Guérin, K. Smaali, K. Lmimouni, J. Simonato, and D. Vuillaume, Org. Electron. 15, 729 (2014).
3. L.-Y. Chiu, H.-L. Cheng, W.-Y. Chou, and F.-C. Tang, Appl. Phys. Lett. 103, 193302 (2013).
4. P. Cosseddu, G. Tiddia, S. Milita, and A. Bonfiglio, Org. Electron. 14, 206 (2013).
5. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
6. Y. Xu, C. Liu, H. Sun, F. Balestra, G. Ghibaudo, W. Scheideler, and Y. Y. Noh, Org. Electron. 15, 1738 (2014).
7. P. Yan, Z. Liu, S. Zhang, D. Liu, X. Wang, S. Yue, and Y. Zhao, APL Mater. 2, 116103 (2014).
8. U. Zschieschang, R. T. Weitz, K. Kern, and H. Klauk, Appl. Phys. A 95, 139 (2009).
9. W. S. Hu, Y. T. Tao, Y. F. Chen, and C. S. Chang, Appl. Phys. Lett. 93, 053304 (2008).
10. O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Appl. Phys. Lett. 84, 3061 (2004).
11. N. Ohashi, H. Tomii, M. Sakai, K. Kudo, and M. Nakamura, Appl. Phys. Lett. 96, 203302 (2010).
12. S. Yin and Y. Lv, Org. Electron. 9, 852 (2008).
13. C. Dimitrakopoulos, J. Appl. Phys. 80, 2501 (1996).
14. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras, Chem. Mater. 16, 4497 (2004).
15. M. Ando, T. B. Kehoe, M. Yoneya, H. Ishii, M. Kawasaki, C. M. Duffy, T. Minakata, R. T. Phillips, and H. Sirringhaus, Adv. Mater. 27, 122 (2015).
16. B. Bräuer, R. Kukreja, A. Virkar, H. B. Akkerman, A. Fognini, T. Tyliszczak, and Z. Bao, Org. Electron. 12, 1936 (2011).
17. M. Iazykov, M. Erouel, J. Tardy, V. A. Skryshevsky, and M. Phaner-Goutorbe, Surf. Sci. 607, 170 (2013).
18. B. Kang, M. Jang, Y. Chung, H. Kim, S. K. Kwak, J. H. Oh, and K. Cho, Nat. Commun. 5, 4752 (2014).
19. G. H. Kim, M. Shtein, and K. P. Pipe, Appl. Phys. Lett. 98, 093303 (2011).
20. B. Lucas, A. El Amrani, A. Moliton, A. Skaiky, A. El Hajj, and M. Aldissi, Solid-State Electron. 69, 99 (2012).
21. A. Virkar, S. Mannsfeld, Z. Bao, and N. Stingelin, Adv. Mater. 22, 3857 (2010).
22. M. McCarthy, B. Liu, R. Jayaraman, S. M. Gilbert, D. Y. Kim, F. So, and A. G. Rinzler, ACS Nano 5, 291 (2011).
23. H. Kleemann, A. A. Günther, K. Leo, and B. Lüssem, Small 9, 3670 (2013).
24. K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, and K. Kudo, Appl. Phys. Lett. 89, 103525 (2006).
25. H. Naruse, S. Naka, and H. Okada, Appl. Phys. Express 1, 011801 (2008).
26. M. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, and A. G. Rinzler, Science 332, 570 (2011).
27. N. Stutzmann, R. H. Friend, and H. Sirringhaus, Science 299, 1881 (2003).
28. T. Takano, H. Yamauchi, M. Iizuka, M. Nakamura, and K. Kudo, Appl. Phys. Express 2, 071501 (2009).
29. M. Uno, I. Doi, K. Takimiya, and J. Takeya, Appl. Phys. Lett. 94, 103307 (2009).
30. F. Pu, H. Yamauchi, H. Iechi, M. Nakamura, and K. Kudo, Appl. Phys. Express 4, 054203 (2011).
31. J. Widmer, J. Fischer, W. Tress, K. Leo, and M. Riede, Org. Electron. 14, 3460 (2013).
32. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, 2nd ed. ( Clarendon Press, Oxford, 1950).
33. P. N. Murgatroyd, J. Phys. D. Appl. Phys. 3, 151 (1970).
34. H. Kleemann, C. Schuenemann, A. A. Zakhidov, M. Riede, B. Lüssem, and K. Leo, Org. Electron. 13, 58 (2012).
35. H. Kleemann, A. A. Zakhidov, M. Anderson, T. Menke, K. Leo, and B. Lüssem, Org. Electron. 13, 506 (2012).
36. F. Ante, D. Kälblein, U. Zschieschang, T. W. Canzler, A. Werner, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk, Small 7, 1186 (2011).
37. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. ( Wiley-Interscience, Hoboken, NJ, 2007).

Data & Media loading...


Article metrics loading...



Pentacene has been extensively studied as an active material for organic field-effect transistors as it shows very good charge carrier mobility along its preferred transport direction. In this contribution, we investigate the hole transport in pentacene thin films by measurement in conventional lateral organic field-effect transistors (OFETs), which yields the hole mobility along the a-b plane of pentacene, and by the recently published potential mapping (POEM) approach, which allows for direct extraction of the charge carrier mobility perpendicular to the substrate, in this case perpendicular to the a-b plane, without the assumption of a specific transport model. While the mobility along the a-b plane—determined from OFET measurements—is found to be in the region of 0.45 cm2/Vs, transport perpendicular to this plane shows an average mobility at least one order of magnitude lower. Investigating also how these effective mobility values depend on the deposition rate of the pentacene films, we find that the decrease in grain size for increasing deposition rate causes the mobility to decrease both parallel and perpendicular to the substrate due to the increased number of grain boundaries to be overcome. For the out-of-plane transport, this effect is found to saturate for deposition rates higher than 2.5 Å/s.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd