Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. J. Heeger, Chem. Soc. Rev. 39, 2354 (2010).
2. F. Huang, H. Wu, and Y. Cao, Chem. Soc. Rev. 39, 2500 (2010).
3. C. Duan, K. Zhang, C. Zhong, F. Huang, and Y. Cao, Chem. Soc. Rev. 42, 9071 (2013).
4. A. Duarte, K. Y. Pu, B. Liu, and G. C. Bazan, Chem. Mater. 23, 501 (2011).
5. C. Zhu, L. Liu, Q. Yang, F. Lv, and S. Wang, Chem. Rev. 112, 4687 (2012).
6. Z. He, H. Wu, and Y. Cao, Adv. Mater. 26, 1006 (2014).
7. S. van Reenen, S. Kouijzer, R. J. Janssen, M. M. Wienk, and M. Kemerink, Adv. Mater. Interfaces 1, 1400189 (2014).
8. J. Yang, A. Garcia, and T.-Q. Nguyen, Appl. Phys. Lett. 90, 103514 (2007).
9. S. Liu, C. Zhong, S. Dong, J. Zhang, X. Huang, C. Zhou, J. Lu, L. Ying, L. Wang, F. Huang, and Y. Cao, Org. Electron. 15, 850 (2014).
10. F. Huang, H. B. Wu, D. Wang, W. Yang, and Y. Cao, Chem. Mater. 16, 708 (2004).
11. R. Søndergaard, M. Helgesen, M. Jørgensen, and F. C. Krebs, Adv. Energy Mater. 1, 68 (2011).
12. D. Ma, M. Lv, M. Lei, J. Zhu, H. Wang, and X. Chen, ACS Nano 8, 1601 (2014).
13. B. J. Worfolk, D. A. Rider, A. L. Elias, M. Thomas, K. D. Harris, and J. M. Buriak, Adv. Funct. Mater. 21, 1816 (2011).
14. C. H. Duan, W. Z. Cai, B. B. Y. Hsu, C. M. Zhong, K. Zhang, C. C. Liu, Z. C. Hu, F. Huang, G. C. Bazan, A. J. Heeger, and Y. Cao, Energy Environ. Sci. 6, 3022 (2013).
15. M. Lv, M. Lei, J. Zhu, T. Hirai, and X. Chen, ACS Appl. Mater. Interfaces 6, 5844 (2014).
16.See supplementary material at for information on the energy levels of the fullerene derivatives, intensity dependent TA charge dynamics and Voc discussions.[Supplementary Material]
17. Z. M. Zhong, Z. H. Hu, Z. X. Jiang, J. B. Wang, Y. W. Chen, C. Song, S. H. Han, F. Huang, J. B. Pengm, J. Wang, and Y. Cao, “Hole-trapping effect of the aliphatic-amine based electron injection materials in the operation of OLEDs to facilitate the electron injection,” Adv. Electron. Mater. (published online).
18. N. Blouin, A. Michaud, and M. Leclerc, Adv. Mater. 19, 2295 (2007).
19. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
20. S. Liu, C. Zhong, J. Zhang, C. Duan, X. Wang, and F. Huang, Sci. China Chem. 54, 1745 (2011).
21. C. Zhong, S. Liu, F. Huang, H. Wu, and Y. Cao, Chem. Mater. 23, 4870 (2011).
22. W. Shockley, Bell Syst. Tech. J. 28, 435 (1949).
23. P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
24. Z. M. Beiley, E. T. Hoke, R. Noriega, J. Dacuña, G. F. Burkhard, J. A. Bartelt, A. Salleo, M. F. Toney, and M. D. McGehee, Adv. Energy Mater. 1, 954 (2011).
25. M. A. Lampert and P. Mark, Current Injection in Solids ( Academic Press, New York, 1970).
26. V. D. Mihailetchi, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 94, 126602 (2005).
27. W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. 94, 206601 (2005).
28. L. G. Kaake, J. J. Jasieniak, R. C. Bakus II, G. C. Welch, D. Moses, G. C. Bazan, and A. J. J. Heeger, J. Am. Chem. Soc. 134, 19828 (2012).
29. L. G. Kaake, Y. Sun, G. C. Bazan, and A. J. Heeger, Appl. Phys. Lett. 102, 133302 (2013).
30. F. Etzold, I. A. Howard, R. Mauer, M. Meister, T.-D. Kim, K.-S. Lee, N. S. Baek, and F. Laquai, J. Am. Chem. Soc. 133, 9469 (2011).
31. J. Guo, H. Ohkita, H. Benten, and S. Ito, J. Am. Chem. Soc. 132, 6154 (2010).
32. L. G. Kaake, D. Moses, and A. J. Heeger, J. Phys. Chem. Lett. 4, 2264 (2013).
33. J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz, and R. L. Whetten, J. Phys. Chem. 95, 11 (1991).
34. D. M. Guldi, H. Hungerbuehler, E. Janata, and K. D. Asmus, J. Phys. Chem. 97, 11258 (1993).

Data & Media loading...


Article metrics loading...



Polymer solar cells (PSCs) based on aliphatic-amino-functionalized materials presented low performance with negligibly small efficiency, the prime mechanism of which is found to be hole trapping induced by the amine end groups. We propose that such hole trapping behavior depends on the relative energetic position of the hole transport states and the trapping states. Herein, we comparatively study the photovoltaic properties of PSCs based on amino-functionalized fullerene derivative blended with poly [N-9′-heptadecanyl-2, 7-carbazole-alt-5, 5-(4′, 7′-di-2-thienyl-2′, 1′, 3′-benzothiadiazole)] (PCDTBT) or poly (3-hexylthiophene) (P3HT). The former polymer has a lower-positioning highest occupied molecular orbital (HOMO) level, whereas the latter has a comparable HOMO level relative to the ionization state of tertiary aliphatic amine in energy. Our investigation confirms our proposition, revealing an ultrafast trapping process in PCDTBT:amino-group-functionalized fullerene derivative film, which seriously crippled hole transport, consequently results in very poor device performance. In contrast, trapping process is almost negligible in P3HT systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd