Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/23/10.1063/1.4922467
1.
1. A. J. Heeger, Chem. Soc. Rev. 39, 2354 (2010).
http://dx.doi.org/10.1039/b914956m
2.
2. F. Huang, H. Wu, and Y. Cao, Chem. Soc. Rev. 39, 2500 (2010).
http://dx.doi.org/10.1039/b907991m
3.
3. C. Duan, K. Zhang, C. Zhong, F. Huang, and Y. Cao, Chem. Soc. Rev. 42, 9071 (2013).
http://dx.doi.org/10.1039/c3cs60200a
4.
4. A. Duarte, K. Y. Pu, B. Liu, and G. C. Bazan, Chem. Mater. 23, 501 (2011).
http://dx.doi.org/10.1021/cm102196t
5.
5. C. Zhu, L. Liu, Q. Yang, F. Lv, and S. Wang, Chem. Rev. 112, 4687 (2012).
http://dx.doi.org/10.1021/cr200263w
6.
6. Z. He, H. Wu, and Y. Cao, Adv. Mater. 26, 1006 (2014).
http://dx.doi.org/10.1002/adma.201303391
7.
7. S. van Reenen, S. Kouijzer, R. J. Janssen, M. M. Wienk, and M. Kemerink, Adv. Mater. Interfaces 1, 1400189 (2014).
http://dx.doi.org/10.1002/admi.201400189
8.
8. J. Yang, A. Garcia, and T.-Q. Nguyen, Appl. Phys. Lett. 90, 103514 (2007).
http://dx.doi.org/10.1063/1.2711707
9.
9. S. Liu, C. Zhong, S. Dong, J. Zhang, X. Huang, C. Zhou, J. Lu, L. Ying, L. Wang, F. Huang, and Y. Cao, Org. Electron. 15, 850 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.01.016
10.
10. F. Huang, H. B. Wu, D. Wang, W. Yang, and Y. Cao, Chem. Mater. 16, 708 (2004).
http://dx.doi.org/10.1021/cm034650o
11.
11. R. Søndergaard, M. Helgesen, M. Jørgensen, and F. C. Krebs, Adv. Energy Mater. 1, 68 (2011).
http://dx.doi.org/10.1002/aenm.201000007
12.
12. D. Ma, M. Lv, M. Lei, J. Zhu, H. Wang, and X. Chen, ACS Nano 8, 1601 (2014).
http://dx.doi.org/10.1021/nn4059067
13.
13. B. J. Worfolk, D. A. Rider, A. L. Elias, M. Thomas, K. D. Harris, and J. M. Buriak, Adv. Funct. Mater. 21, 1816 (2011).
http://dx.doi.org/10.1002/adfm.201100049
14.
14. C. H. Duan, W. Z. Cai, B. B. Y. Hsu, C. M. Zhong, K. Zhang, C. C. Liu, Z. C. Hu, F. Huang, G. C. Bazan, A. J. Heeger, and Y. Cao, Energy Environ. Sci. 6, 3022 (2013).
http://dx.doi.org/10.1039/c3ee41838c
15.
15. M. Lv, M. Lei, J. Zhu, T. Hirai, and X. Chen, ACS Appl. Mater. Interfaces 6, 5844 (2014).
http://dx.doi.org/10.1021/am5007047
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.4922467 for information on the energy levels of the fullerene derivatives, intensity dependent TA charge dynamics and Voc discussions.[Supplementary Material]
17.
17. Z. M. Zhong, Z. H. Hu, Z. X. Jiang, J. B. Wang, Y. W. Chen, C. Song, S. H. Han, F. Huang, J. B. Pengm, J. Wang, and Y. Cao, “Hole-trapping effect of the aliphatic-amine based electron injection materials in the operation of OLEDs to facilitate the electron injection,” Adv. Electron. Mater. (published online).
http://dx.doi.org/10.1002/aelm.201400014
18.
18. N. Blouin, A. Michaud, and M. Leclerc, Adv. Mater. 19, 2295 (2007).
http://dx.doi.org/10.1002/adma.200602496
19.
19. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
20.
20. S. Liu, C. Zhong, J. Zhang, C. Duan, X. Wang, and F. Huang, Sci. China Chem. 54, 1745 (2011).
http://dx.doi.org/10.1007/s11426-011-4386-8
21.
21. C. Zhong, S. Liu, F. Huang, H. Wu, and Y. Cao, Chem. Mater. 23, 4870 (2011).
http://dx.doi.org/10.1021/cm2025685
22.
22. W. Shockley, Bell Syst. Tech. J. 28, 435 (1949).
http://dx.doi.org/10.1002/j.1538-7305.1949.tb03645.x
23.
23. P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996).
http://dx.doi.org/10.1063/1.116583
24.
24. Z. M. Beiley, E. T. Hoke, R. Noriega, J. Dacuña, G. F. Burkhard, J. A. Bartelt, A. Salleo, M. F. Toney, and M. D. McGehee, Adv. Energy Mater. 1, 954 (2011).
http://dx.doi.org/10.1002/aenm.201100204
25.
25. M. A. Lampert and P. Mark, Current Injection in Solids ( Academic Press, New York, 1970).
26.
26. V. D. Mihailetchi, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 94, 126602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.126602
27.
27. W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. 94, 206601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.206601
28.
28. L. G. Kaake, J. J. Jasieniak, R. C. Bakus II, G. C. Welch, D. Moses, G. C. Bazan, and A. J. J. Heeger, J. Am. Chem. Soc. 134, 19828 (2012).
http://dx.doi.org/10.1021/ja308949m
29.
29. L. G. Kaake, Y. Sun, G. C. Bazan, and A. J. Heeger, Appl. Phys. Lett. 102, 133302 (2013).
http://dx.doi.org/10.1063/1.4799348
30.
30. F. Etzold, I. A. Howard, R. Mauer, M. Meister, T.-D. Kim, K.-S. Lee, N. S. Baek, and F. Laquai, J. Am. Chem. Soc. 133, 9469 (2011).
http://dx.doi.org/10.1021/ja201837e
31.
31. J. Guo, H. Ohkita, H. Benten, and S. Ito, J. Am. Chem. Soc. 132, 6154 (2010).
http://dx.doi.org/10.1021/ja100302p
32.
32. L. G. Kaake, D. Moses, and A. J. Heeger, J. Phys. Chem. Lett. 4, 2264 (2013).
http://dx.doi.org/10.1021/jz4010569
33.
33. J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz, and R. L. Whetten, J. Phys. Chem. 95, 11 (1991).
http://dx.doi.org/10.1021/j100154a006
34.
34. D. M. Guldi, H. Hungerbuehler, E. Janata, and K. D. Asmus, J. Phys. Chem. 97, 11258 (1993).
http://dx.doi.org/10.1021/j100145a024
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/23/10.1063/1.4922467
Loading
/content/aip/journal/apl/106/23/10.1063/1.4922467
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/23/10.1063/1.4922467
2015-06-10
2016-12-09

Abstract

Polymer solar cells (PSCs) based on aliphatic-amino-functionalized materials presented low performance with negligibly small efficiency, the prime mechanism of which is found to be hole trapping induced by the amine end groups. We propose that such hole trapping behavior depends on the relative energetic position of the hole transport states and the trapping states. Herein, we comparatively study the photovoltaic properties of PSCs based on amino-functionalized fullerene derivative blended with poly [N-9′-heptadecanyl-2, 7-carbazole-alt-5, 5-(4′, 7′-di-2-thienyl-2′, 1′, 3′-benzothiadiazole)] (PCDTBT) or poly (3-hexylthiophene) (P3HT). The former polymer has a lower-positioning highest occupied molecular orbital (HOMO) level, whereas the latter has a comparable HOMO level relative to the ionization state of tertiary aliphatic amine in energy. Our investigation confirms our proposition, revealing an ultrafast trapping process in PCDTBT:amino-group-functionalized fullerene derivative film, which seriously crippled hole transport, consequently results in very poor device performance. In contrast, trapping process is almost negligible in P3HT systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/23/1.4922467.html;jsessionid=R0ZqmH-GZEeERjQlXKfMJjBR.x-aip-live-03?itemId=/content/aip/journal/apl/106/23/10.1063/1.4922467&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/23/10.1063/1.4922467&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/23/10.1063/1.4922467'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,