Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/23/10.1063/1.4922554
1.
1. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nat. Mater. 13, 897 (2014).
http://dx.doi.org/10.1038/nmat4014
2.
2. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
http://dx.doi.org/10.1126/science.1254050
3.
3. W.-J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).
http://dx.doi.org/10.1063/1.4864778
4.
4. S. B. Zhang, S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9642
5.
5. Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, and J. Huang, App. Phys. Lett. 105, 163508 (2014).
http://dx.doi.org/10.1063/1.4899051
6.
6. I. Deretzis, A. Alberti, G. Pellegrino, E. Smecca, F. Giannazzo, N. Sakai, T. Miyasaka, and A. La Magna, Appl. Phys. Lett. 106, 131904 (2015).
http://dx.doi.org/10.1063/1.4916821
7.
7. T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, and T. Dittrich, Appl. Phys. Lett. 103, 183906 (2013).
http://dx.doi.org/10.1063/1.4826116
8.
8. V. Somsongkul, F. Lang, A. R. Jeong, M. Rusu, M. Arunchaiya, and T. Dittrich, Phys. Status Solidi (RRL) 08, 763 (2014).
http://dx.doi.org/10.1002/pssr.201409292
9.
9. T.-B. Song, Q. Chen, H. Zhou, S. Luo, Y. Yang, and J. You, Nano Energy 12, 494 (2015).
http://dx.doi.org/10.1016/j.nanoen.2015.01.025
10.
10. E. L. Unger, A. R. Bowring, C. J. Tassone, V. L. Pool, A. Gold-Parker, R. Cheacharoen, K. H. Stone, E. T. Hoke, M. F. Toney, and M. D. McGehee, Chem. Mater. 26, 7158 (2014).
http://dx.doi.org/10.1021/cm503828b
11.
11. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
http://dx.doi.org/10.1126/science.1243982
12.
12. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26, 1584 (2014).
http://dx.doi.org/10.1002/adma.201305172
13.
13. S. A. Bretschneider, J. Weickert, J. A. Dorman, and L. Schmidt-Mende, APL Mater. 2, 040701 (2014).
http://dx.doi.org/10.1063/1.4871795
14.
14. V. Duzhko, V. Y. Timoshenko, F. Koch, and T. Dittrich, Phys. Rev. B 64, 075204 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.075204
15.
15. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, Science 345, 295 (2014).
http://dx.doi.org/10.1126/science.1254763
16.
16. B.-W. Park, B. Philippe, T. Gustafsson, K. Sveinbjörnsson, A. Hagfeldt, E. M. J. Johansson, and G. Boschloo, Chem. Mater. 26, 4466 (2014).
http://dx.doi.org/10.1021/cm501541p
17.
17. P. Prajongtat and T. Dittrich, J. Phys. Chem. C 119, 9926 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b01667
18.
18. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24, 151 (2014).
http://dx.doi.org/10.1002/adfm.201302090
19.
19. S. Pathak, A. Sepo, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hüttner, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, ACS Nano 9, 2311 (2015).
http://dx.doi.org/10.1021/nn506465n
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/23/10.1063/1.4922554
Loading
/content/aip/journal/apl/106/23/10.1063/1.4922554
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/23/10.1063/1.4922554
2015-06-10
2016-12-06

Abstract

Modulated surface photovoltage (SPV) spectra have been correlated with the phase composition in layers of CHNHPbI (MAPbI) prepared from MAI and PbCl and annealed at 100 °C. Depending on the annealing time, different compositions of MAPbI, MAPbCl, MACl, PbI, and an un-identified phase were found. It has been demonstrated that evaporation of MAI and HI is crucial for the development of electronic states in MAPbI and that only the appearance and evolution of the phase PbI has an influence on electronic states in MAPbI. With ongoing annealing, (i) a transition from p- to n-type doping was observed with the appearance of PbI, (ii) shallow acceptor states were distinguished and disappeared in n-type doped MAPbI, and (iii) a minimum of the SPV response related to deep defect states was found at the transition from p- to n-type doping. The results are discussed with respect to the further development of highly efficient and stable MAPbI absorbers for solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/23/1.4922554.html;jsessionid=jBGviM5KVsE6RoVR6gV3F1FQ.x-aip-live-06?itemId=/content/aip/journal/apl/106/23/10.1063/1.4922554&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/23/10.1063/1.4922554&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/23/10.1063/1.4922554'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,