Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa et al., Nat. Photonics 6, 540 (2012).
2. R. Soufli, M. Fernández-Perea, J. Krzywinski, D. W. Rich, S. L. Baker, J. C. Robinson, S. Hau-Riege, E. M. Gullikson, V. V. Yashchuk, W. R. McKinney et al., Proc. SPIE 8777, 877702 (2013).
3. H. Yumoto, H. Mimura, T. Koyama, S. Matsuyama, K. Tono, T. Togashi, Y. Inubushi, T. Sato, T. Tanaka, T. Kimura et al., Nat. Photonics 7, 43 (2013).
4. K. Tono, T. Togashi, Y. Inubushi, T. Sato, T. Katayama, K. Ogawa, H. Ohashi, H. Kimura, S. Takahashi, K. Takeshita et al., New J. Phys. 15, 083035 (2013).
5. N. Gerasimova, S. Dziarzhytski, H. Weigelt, J. Chalupský, V. Hájková, L. Vyšín, and L. Juha, Rev. Sci. Instrum. 84, 065104 (2013).
6. J. M. Liu, Opt. Lett. 7, 196 (1982).
7. J. Chalupský, P. Boháček, V. Hájková, S. P. Hau-Riege, P. A. Heimann, L. Juha, J. Krzywinski, M. Messerschmidt, S. P. Moeller, B. Nagler et al., Nucl. Instrum. Methods Phys. Res. A 631, 130 (2011).
8. A. Aquila, C. Ozkan, R. Sobierajski, V. Hájková, T. Burian, J. Chalupský, L. Juha, M. Störmer, H. Ohashi, T. Koyama et al., Proc. SPIE 8777, 87770H (2013).
9. V. Hájková, L. Juha, P. Boháček, T. Burian, J. Chalupský, L. Vyšín, J. Gaudin, P. A. Heimann, S. P. Hau-Riege, M. Jurek et al., Proc. SPIE 8077, 807718 (2011).
10. T. Koyama, H. Yumoto, Y. Senba, K. Tono, T. Sato, T. Togashi, Y. Inubushi, T. Katayama, J. Kim, S. Matsuyama et al., Opt. Express 21, 15382 (2013).
11. J. Chalupský, V. Hájková, V. Altapova, T. Burian, A. J. Gleeson, L. Juha, M. Jurek, H. Sinn, M. Störmer, R. Sobierajski et al., Appl. Phys. Lett. 95, 031111 (2009).
12. J. Krzywinski, D. Cocco, S. Moeller, and D. Ratner, Opt. Express 23, 5397 (2015).
13. T. Koyama, H. Yumoto, K. Tono, T. Sato, T. Togashi, Y. Inubushi, T. Katayama, J. Kim, S. Matsuyama, H. Mimura et al., Proc. SPIE 8848, 88480T (2013).
14. R. Soufli, S. L. Baker, J. C. Robinson, E. M. Gullikson, T. J. McCarville, M. J. Pivovaroff, P. Stefan, S. P. Hau-Riege, and R. Bionta, Proc. SPIE 7361, 73610U (2009).
15. S. P. Hau-Riege, R. A. London, R. M. Bionta, M. A. McKernan, S. L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, J. B. Pelka, M. Jurek et al., Appl. Phys. Lett. 90, 173128 (2007).
16. E. H. P. Cordfunke and R. J. M. Konings, Thermochim. Acta 139, 99106 (1989).
17. M. W. Chase, Jr., “ NIST-JANAF thermochemical tables, fourth edition,” J. Phys. Chem. Ref. Data, Monogr. No. 9, 11951 (1998).
18. Z. Jiang, X. Jiang, W. Liu, and Z. Wu, J. Appl. Phys. 65, 196 (1989).
19. R. Nüske, A. Jurgilaitis, H. Enquist, S. D. Farahani, J. Gaudin, L. Guerin, M. Harb, C. v. Korff Schmising, M. Störmer, M. Wulff, and J. Larsson, Appl. Phys. Lett. 98, 101909 (2011).
20. D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, Proc. SPIE 5168, 111 (2004).
21. R. A. London, R. M. Bionta, R. O. Tatchyn, and S. Roesler, Proc. SPIE 4500, 51 (2001).
22. J. Sempau, E. Acosta, J. Baro, J. M. Fernández-Varea, and F. Salvat, Nucl. Instrum. Methods B 132, 377 (1997).
23. J. Sempau, J. M. Fernández-Varea, E. Acosta, and F. Salvat, Nucl. Instrum. Methods B 207, 107 (2003).

Data & Media loading...


Article metrics loading...



X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. We conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd