Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. Hofmann, P. Miller, P. Sullivan, T. S. Jones, and D. D. C. Bradley, Sens. Actuators, B 106(2), 878 (2005).
2. X. Wang, O. Hofmann, R. Das, E. M. Barrett, and D. D. C. Bradley, Lab Chip 7(1), 58 (2007).
3. X. Wang, M. Amatatongchai, D. Nacapricha, O. Hofmann, J. C. de Mello, D. D. C. Bradley, and A. J. de Mello, Sens. Actuators, B 140(2), 643 (2009).
4. P. E. Keivanidis, N. C. Greenham, H. Sirringhaus, R. H. Friend, J. C. Blakesley, R. Speller, M. Campoy-Quiles, T. Agostinelli, D. D. C. Bradley, and J. Nelson, Appl. Phys. Lett. 92(2), 023304 (2008).
5. T. Agostinelli, M. Campoy-Quiles, J. C. Blakesley, R. Speller, D. D. C. Bradley, and J. Nelson, Appl. Phys. Lett. 93(20), 203305 (2008).
6. H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, Adv. Mater. 25(11), 1646 (2013).
7. S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata, and T. S. Jones, Adv. Funct. Mater. 14(12), 1205 (2004).
8. N. Tokmoldin, N. Griffiths, D. D. C. Bradley, and S. A. Haque, Adv. Mater. 21(34), 3475 (2009).
9. P. Ravirajan, D. D. C. Bradley, J. Nelson, S. A. Haque, J. R. Durrant, H. J. P. Smit, and J. M. Kroon, Appl. Phys. Lett. 86(14), 143101 (2005).
10. R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. deMello, D. D. C. Bradley, and J. Nelson, Adv. Energy Mater. 3(6), 718 (2013).
11. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Sol. Energy Mater. Sol. Cells 90(20), 3520 (2006).
12. M. P. De Jong, L. J. Van Ijzendoorn, and M. J. A. De Voigt, Appl. Phys. Lett. 77(14), 2255 (2000).
13. R. Jin, P. A. Levermore, J. Huang, X. Wang, and D. D. C. Bradley, Phys. Chem. Chem. Phys. 11(18), 3455 (2009).
14. P. A. Levermore, L. Chen, X. Wang, R. Das, and D. D. C. Bradley, Adv. Mater. 19(17), 2379 (2007).
15. X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, Adv. Funct. Mater. 22(7), 1454 (2012).
16. S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, ACS Nano 4(6), 3169 (2010).
17. J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, and A. Cao, Nano Lett. 7(8), 2317 (2007).
18. Y.-K. Han, M.-Y. Chang, K.-S. Ho, T.-H. Hsieh, J.-L. Tsai, and P.-C. Huang, Sol. Energy Mater. Sol. Cells 128, 198 (2014).
19. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, Appl. Phys. Lett. 88(7), 073508 (2006).
20. M. D. Irwin, D. Bruce Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci. 105(8), 2783 (2008).
21. N. Yaacobi-Gross, N. D. Treat, P. Pattanasattayavong, H. Faber, A. K. Perumal, N. Stingelin, D. D. C. Bradley, P. N. Stavrinou, M. Heeney, and T. D. Anthopoulos, Adv. Energy Mater. 5(3), 1401529 (2015).
22. W. Sun, H. Peng, Y. Li, W. Yan, Z. Liu, Z.-Q. Bian, and C. H. Huang, J. Phys. Chem. C 118(30), 16806 (2014).
23. P. M. Sirimanne, M. Rusop, T. Shirata, T. Soga, and T. Jimbo, Mater. Chem. Phys. 80(2), 461 (2003).
24. M. Grundmann, F.-L. Schein, M. Lorenz, T. Böntgen, J. Lenzner, and H. von Wenckstern, Phys. Status Solidi A 210(9), 1671 (2013).
25. M. Rusop, T. Soga, T. Jimbo, and M. Umeno, Surf. Rev. Lett. 11(06), 577 (2004).
26. P. Stakhira, V. Cherpak, D. Volynyuk, F. Ivastchyshyn, Z. Hotra, V. Tataryn, and G. Luka, Thin Solid Films 518(23), 7016 (2010).
27. S. Shao, J. Liu, J. Zhang, B. Zhang, Z. Xie, Y. Geng, and L. Wang, ACS Appl. Mater. Interfaces 4(10), 5704 (2012).
28. D.-H. Kim, T.-M. Kim, W.-I. Jeong, and J.-J. Kim, Appl. Phys. Lett. 101(15), 153303 (2012).
29. J. A. Christians, R. C. M. Fung, and P. V. Kamat, J. Am. Chem. Soc. 136(2), 758 (2014).
30. E. T. Hoke, K. Vandewal, J. A. Bartelt, W. R. Mateker, J. D. Douglas, R. Noriega, K. R. Graham, J. M. J. Fréchet, A. Salleo, and M. D. McGehee, Adv. Energy Mater. 3(2), 220 (2013).
31.See supplementary material at for further experimental data obtained and relevant analysis.[Supplementary Material]

Data & Media loading...


Article metrics loading...



We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd