Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/24/10.1063/1.4922758
1.
1. O. Hofmann, P. Miller, P. Sullivan, T. S. Jones, and D. D. C. Bradley, Sens. Actuators, B 106(2), 878 (2005).
http://dx.doi.org/10.1016/j.snb.2004.10.005
2.
2. X. Wang, O. Hofmann, R. Das, E. M. Barrett, and D. D. C. Bradley, Lab Chip 7(1), 58 (2007).
http://dx.doi.org/10.1039/B611067C
3.
3. X. Wang, M. Amatatongchai, D. Nacapricha, O. Hofmann, J. C. de Mello, D. D. C. Bradley, and A. J. de Mello, Sens. Actuators, B 140(2), 643 (2009).
http://dx.doi.org/10.1016/j.snb.2009.04.068
4.
4. P. E. Keivanidis, N. C. Greenham, H. Sirringhaus, R. H. Friend, J. C. Blakesley, R. Speller, M. Campoy-Quiles, T. Agostinelli, D. D. C. Bradley, and J. Nelson, Appl. Phys. Lett. 92(2), 023304 (2008).
http://dx.doi.org/10.1063/1.2834364
5.
5. T. Agostinelli, M. Campoy-Quiles, J. C. Blakesley, R. Speller, D. D. C. Bradley, and J. Nelson, Appl. Phys. Lett. 93(20), 203305 (2008).
http://dx.doi.org/10.1063/1.3028640
6.
6. H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, Adv. Mater. 25(11), 1646 (2013).
http://dx.doi.org/10.1002/adma.201204306
7.
7. S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata, and T. S. Jones, Adv. Funct. Mater. 14(12), 1205 (2004).
http://dx.doi.org/10.1002/adfm.200400035
8.
8. N. Tokmoldin, N. Griffiths, D. D. C. Bradley, and S. A. Haque, Adv. Mater. 21(34), 3475 (2009).
http://dx.doi.org/10.1002/adma.200802594
9.
9. P. Ravirajan, D. D. C. Bradley, J. Nelson, S. A. Haque, J. R. Durrant, H. J. P. Smit, and J. M. Kroon, Appl. Phys. Lett. 86(14), 143101 (2005).
http://dx.doi.org/10.1063/1.1890468
10.
10. R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. deMello, D. D. C. Bradley, and J. Nelson, Adv. Energy Mater. 3(6), 718 (2013).
http://dx.doi.org/10.1002/aenm.201200967
11.
11. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Sol. Energy Mater. Sol. Cells 90(20), 3520 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.06.041
12.
12. M. P. De Jong, L. J. Van Ijzendoorn, and M. J. A. De Voigt, Appl. Phys. Lett. 77(14), 2255 (2000).
http://dx.doi.org/10.1063/1.1315344
13.
13. R. Jin, P. A. Levermore, J. Huang, X. Wang, and D. D. C. Bradley, Phys. Chem. Chem. Phys. 11(18), 3455 (2009).
http://dx.doi.org/10.1039/b819200f
14.
14. P. A. Levermore, L. Chen, X. Wang, R. Das, and D. D. C. Bradley, Adv. Mater. 19(17), 2379 (2007).
http://dx.doi.org/10.1002/adma.200700614
15.
15. X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, Adv. Funct. Mater. 22(7), 1454 (2012).
http://dx.doi.org/10.1002/adfm.201101787
16.
16. S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, ACS Nano 4(6), 3169 (2010).
http://dx.doi.org/10.1021/nn100551j
17.
17. J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, and A. Cao, Nano Lett. 7(8), 2317 (2007).
http://dx.doi.org/10.1021/nl070961c
18.
18. Y.-K. Han, M.-Y. Chang, K.-S. Ho, T.-H. Hsieh, J.-L. Tsai, and P.-C. Huang, Sol. Energy Mater. Sol. Cells 128, 198 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.04.031
19.
19. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, Appl. Phys. Lett. 88(7), 073508 (2006).
http://dx.doi.org/10.1063/1.2174093
20.
20. M. D. Irwin, D. Bruce Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci. 105(8), 2783 (2008).
http://dx.doi.org/10.1073/pnas.0711990105
21.
21. N. Yaacobi-Gross, N. D. Treat, P. Pattanasattayavong, H. Faber, A. K. Perumal, N. Stingelin, D. D. C. Bradley, P. N. Stavrinou, M. Heeney, and T. D. Anthopoulos, Adv. Energy Mater. 5(3), 1401529 (2015).
http://dx.doi.org/10.1002/aenm.201401529
22.
22. W. Sun, H. Peng, Y. Li, W. Yan, Z. Liu, Z.-Q. Bian, and C. H. Huang, J. Phys. Chem. C 118(30), 16806 (2014).
http://dx.doi.org/10.1021/jp412784q
23.
23. P. M. Sirimanne, M. Rusop, T. Shirata, T. Soga, and T. Jimbo, Mater. Chem. Phys. 80(2), 461 (2003).
http://dx.doi.org/10.1016/S0254-0584(02)00547-3
24.
24. M. Grundmann, F.-L. Schein, M. Lorenz, T. Böntgen, J. Lenzner, and H. von Wenckstern, Phys. Status Solidi A 210(9), 1671 (2013).
http://dx.doi.org/10.1002/pssa.201370056
25.
25. M. Rusop, T. Soga, T. Jimbo, and M. Umeno, Surf. Rev. Lett. 11(06), 577 (2004).
http://dx.doi.org/10.1142/S0218625X04006554
26.
26. P. Stakhira, V. Cherpak, D. Volynyuk, F. Ivastchyshyn, Z. Hotra, V. Tataryn, and G. Luka, Thin Solid Films 518(23), 7016 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.06.051
27.
27. S. Shao, J. Liu, J. Zhang, B. Zhang, Z. Xie, Y. Geng, and L. Wang, ACS Appl. Mater. Interfaces 4(10), 5704 (2012).
http://dx.doi.org/10.1021/am3017653
28.
28. D.-H. Kim, T.-M. Kim, W.-I. Jeong, and J.-J. Kim, Appl. Phys. Lett. 101(15), 153303 (2012).
http://dx.doi.org/10.1063/1.4758681
29.
29. J. A. Christians, R. C. M. Fung, and P. V. Kamat, J. Am. Chem. Soc. 136(2), 758 (2014).
http://dx.doi.org/10.1021/ja411014k
30.
30. E. T. Hoke, K. Vandewal, J. A. Bartelt, W. R. Mateker, J. D. Douglas, R. Noriega, K. R. Graham, J. M. J. Fréchet, A. Salleo, and M. D. McGehee, Adv. Energy Mater. 3(2), 220 (2013).
http://dx.doi.org/10.1002/aenm.201200474
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4922758 for further experimental data obtained and relevant analysis.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/24/10.1063/1.4922758
Loading
/content/aip/journal/apl/106/24/10.1063/1.4922758
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/24/10.1063/1.4922758
2015-06-16
2016-09-25

Abstract

We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/24/1.4922758.html;jsessionid=vLuPK3SBOgutwr53RxsETZsU.x-aip-live-06?itemId=/content/aip/journal/apl/106/24/10.1063/1.4922758&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/24/10.1063/1.4922758&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/24/10.1063/1.4922758'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,