Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. B. Mikhailik and H. Kraus, J. Phys. D: Appl. Phys. 39, 11811191 (2006).
2. P. Meunier, M. Bravin, M. Bruckmayer, S. Giordano, M. Loidl, O. Meier, F. Pröbst, W. Seidel, M. Sisti, L. Stodolsky et al., Appl. Phys. Lett. 75, 13351337 (1999).
3. R. F. Lang, G. Angloher, M. Bauer, I. Bavykina, A. Bento, A. Brown, C. Bucci, C. Ciemniak, C. Coppi, G. Deuter et al., Astropart. Phys. 33, 6064 (2010).
4. A. Brown, S. Henry, H. Kraus, and C. McCabe, Phys. Rev. D 85, 021301 (2012).
5. C. Cozzini, G. Angloher, C. Bucci, F. von Feilitzsch, D. Hauff, S. Henry, Th. Jagemann, J. Jochum, H. Kraus, B. Majorovits et al., Phys. Rev. C 70, 064606 (2004).
6. J. W. Beeman, F. A. Danevich, V. Ya. Degoda, E. N. Galashov, A. Giuliani, V. V. Kobychev, M. Mancuso, S. Marnieros, C. Nones, E. Olivieri et al., Phys. Lett. B 710, 318323 (2012).
7. H. Bhang, R. S. Boiko, D. M. Chernyak, J. H. Choi, S. Choi, F. A. Danevich, K. V. Efendiev, C. Enss, A. Fleischmann, A. M. Gangapshev et al., J. Phys.: Conf. Ser. 375, 042023 (2012).
8. V. B. Mikhailik, H. Kraus, G. Miller, M. S. Mykhaylyk, and D. Wahl, J. Appl. Phys. 97, 083523 (2005).
9. A. Senyshyn, H. Kraus, V. B. Mikhailik, L. Vasylechko, and M. Knapp, Phys. Rev. B 73, 014104 (2006).
10. V. V. Alenkov, O. A. Buzanov, N. Khanbekov, S. K. Kim, H. J. Kim, V. N. Kornoukhov, H. Kraus, and V. B. Mikhailik, Cryst. Res. Technol. 46, 12231228 (2011).
11. V. B. Mikhailik, S. Henry, H. Kraus, and I. Solskii, Nucl. Instrum. Methods Phys. Res., Sect. A 583, 350355 (2007).
12. V. B. Mikhailik, H. Kraus, S. Henry, and A. J. B. Tolhurst, Phys. Rev. B 75, 184308 (2007).
13. J. A. Groenink, C. Hakfoort, and G. Blasse, Phys. Status Solidi A 54, 329336 (1979).
14. V. Babin, P. Bohacek, E. Bender, A. Krasnikov, E. Mihokova, M. Nikl, N. Senguttuvan, A. Stolovits, Y. Usuki, S. Zazubovich et al., Radiat. Meas. 38, 533537 (2004).
15. A. Kotlov, L. Jönsson, H. Kraus, V. Mikhailik, V. Nagirnyi, G. Svensson, and B. I. Zadneprovskii, Radiat. Meas. 42, 767770 (2007).
16. M. Itoh and T. Kajitani, Phys. Status Solidi B 248, 422425 (2011).
17. F. Carbanora, A. G. Cocco, G. Fiorillo, and V. S. Gallo, Nucl. Instrum. Methods Phys. Res., Sect. A 610, 271275 (2009).
18. H. Kraus and V. B. Mikhailik, Nucl. Instrum. Methods Phys. Res., Sect. A 621, 395400 (2010).
19. E. Aprile, M. Beck, K. Bokeloh, R. Budnika, B. Choi, H. A. Contreras, K.-L. Giboni, L. W. Goetzke, R. F. Lang, K. E. Lim et al., J. Instrum. 7, P10005 (2012).
20. S. Ingleby, “ Cryodetector readout for direct dark matter searches,” Ph.D. thesis ( Oxford Linacre College, 2011).
21. V. B. Mikhailik and H. Kraus, Radiat. Meas. 49, 712 (2013).
22. X.-F. Navick, private communication, 2015. For a certain temperature, the resistance value from the generic calibration curve is likely to have a systematic error estimated at 20%. The error is mainly due to the fact that NTD-Ge is a piezoelectric material and the exact calibration will vary every time it is glued to a substrate.
23. M. Moszyński, M. Balcerzyk, W. Czarnacki, M. Kapusta, W. Klamra, A. Syntfeld, and M. Szawlows, IEEE Trans. Nucl. Sci. 51, 10741079 (2004).
24. G. Boulon, J. Phys. 32, 333342 (1971).
25. A. E. Hughes and G. P. Pells, Phys. Status Solidi B 71, 707718 (1975).
26. V. B. Mikhailik and H. Kraus, Phys. Status Solidi B 247, 15831599 (2010).
27. V. B. Mikhailik, H. Kraus, M. Itoh, D. Iri, and M. Uchida, J. Phys.: Condens. Matter 17, 72097218 (2005).
28. M. Itoh and T. Kajitani, Phys. Rev. B 87, 085201 (2013).
29. V. Murk, M. Nikl, E. Mihokova, and K. Nitsch, J. Phys.: Condens. Matter 9, 249256 (1997).

Data & Media loading...


Article metrics loading...



Application of CaMoO as a scintillation target in cryogenic rare event searches relies on the understanding of scintillation properties of the material at the temperatures at which these detectors operate. We devised and implemented a detection module with a low-temperature photomultiplier from Hamamatsu (model R8520-06) powered by a Cockcroft-Walton generator. The detector module containing the CaMoO crystal was placed in a 3He/4He dilution refrigerator and used to measure scintillation characteristics of CaMoO in the millikelvin temperature range. At the lowest temperature achieved, the energy resolution of CaMoO for 122 keV γ from a 57Co source is found to be 30%, and the fast and slow decay constants are 40.6 ± 0.8 s and 3410 ± 50 s, respectively. The temperature variation of the CaMoO decay kinetics is discussed in terms of a three-level model of the emission center.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd