Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/25/10.1063/1.4923188
1.
1. J. Stangl, V. Holý, and G. Bauer, Rev. Mod. Phys. 76, 725783 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.725
2.
2. J. J. Zhang, M. Brehm, M. Grydlik, and O. G. Schmidt, Chem. Soc. Rev. 44, 2639 (2015).
http://dx.doi.org/10.1039/C4CS00077C
3.
3. J.-N. Aqua, I. Berbezier, L. Favre, T. Frisch, and A. Ronda, Phys. Rep. 522, 59189 (2013).
http://dx.doi.org/10.1016/j.physrep.2012.09.006
4.
4. S. Kiravittaya, A. Rastelli, and O. G. Schmidt, Rep. Prog. Phys. 72, 04650234 (2009).
http://dx.doi.org/10.1088/0034-4885/72/4/046502
5.
5. A. Alduino and M. Paniccia, Nat. Photonics 1, 153 (2007).
http://dx.doi.org/10.1038/nphoton.2007.17
6.
6. Z.-Y. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, Appl. Phys. Lett. 82, 47794781 (2003).
http://dx.doi.org/10.1063/1.1581986
7.
7. C. Dais, G. Mussler, H. Sigg, E. Müller, H. H. Solak, and D. Grützmacher, J. Appl. Phys. 105, 122405 (2009).
http://dx.doi.org/10.1063/1.3117230
8.
8. M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, Nanotechnology 24, 105601 (2013).
http://dx.doi.org/10.1088/0957-4484/24/10/105601
9.
9. Y. J. Ma, Z. Zhong, Q. Lv, T. Zhou, X. J. Yang, Y. L. Fan, Y. Q. Wu, J. Zou, and Z. M. Jiang, Appl. Phys. Lett. 100, 153113 (2012).
http://dx.doi.org/10.1063/1.3702883
10.
10. C. J. Duska and J. A. Floro, J. Mater. Res. 29, 22402249 (2014).
http://dx.doi.org/10.1557/jmr.2014.239
11.
11. R. Jannesari, M. Schatzl, F. Hackl, M. Glaser, K. Hingerl, T. Fromherz, and F. Schäffler, Opt. Express 22, 2542625435 (2014).
http://dx.doi.org/10.1364/OE.22.025426
12.
12. P. Schittenhelm, M. Gail, and G. Abstreiter, J. Cryst. Growth 157, 260264 (1995).
http://dx.doi.org/10.1016/0022-0248(95)00323-1
13.
13. O. G. Schmidt, C. Lange, and K. Eberl, Appl. Phys. Lett. 75, 19051907 (1999).
http://dx.doi.org/10.1063/1.124867
14.
14. J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, Appl. Phys. Lett. 79, 1980 (2001).
http://dx.doi.org/10.1063/1.1405152
15.
15. B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, Appl. Phys. Lett. 84, 12931295 (2004).
http://dx.doi.org/10.1063/1.1650873
16.
16. M. V. Shaleev, A. V. Novikov, N. A. Baydakova, A. N. Yablonskiy, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, Semiconductors 45, 198202 (2011).
http://dx.doi.org/10.1134/S1063782611020199
17.
17. M. Brehm, M. Grydlik, F. Hackl, E. Lausecker, T. Fromherz, and G. Bauer, Nanoscale Res. Lett. 5, 18681872 (2010).
http://dx.doi.org/10.1007/s11671-010-9713-z
18.
18. J. Y. Marzin, J. M. Gerard, A. Izrael, D. Barrier, and G. Bastard, Phys. Rev. Lett. 73, 716719 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.716
19.
19. L. Landin, M. S. Miller, M.-E. Pistol, C. E. Pryor, and L. Samuelson, Science 280, 262264 (1998).
http://dx.doi.org/10.1126/science.280.5361.262
20.
20. P. Atkinson, S. Kiravittaya, M. Benyoucef, A. Rastelli, and O. G. Schmidt, Appl. Phys. Lett. 93, 101908 (2008).
http://dx.doi.org/10.1063/1.2980445
21.
21. A. Gustafsson, M.-E. Pistol, L. Montelius, and L. Samuelson, J. Appl. Phys. 84, 17151775 (1998).
http://dx.doi.org/10.1063/1.368613
22.
22. G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, S. Tatarenko, K. Kheng, and J. P. Poizat, Phys. Rev. B 80, 085310 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.085310
23.
23. M. D. Mason, G. M. Credo, K. D. Weston, and S. K. Buratto, Phys. Rev. Lett. 80, 54055408 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5405
24.
24. J. Valenta, R. Juhasz, and J. Linnros, Appl. Phys. Lett. 80, 10701072 (2002).
http://dx.doi.org/10.1063/1.1448400
25.
25. I. Sychugov, A. Fucikova, F. Pevere, Z. Yang, J. G. C. Veinot, and J. Linnros, ACS Photonics 1, 9981005 (2014).
http://dx.doi.org/10.1021/ph500221z
26.
26. M. Brehm, M. Grydlik, T. Tayagaki, G. Langer, F. Schäffler, and O. G. Schmidt, Nanotechnology 26, 225202 (2015).
http://dx.doi.org/10.1088/0957-4484/26/22/225202
27.
27. H. Lichtenberger, M. Mühlberger, and F. Schäffler, Appl. Phys. Lett. 82, 36503652 (2003).
http://dx.doi.org/10.1063/1.1577391
28.
28. M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, J. Appl. Phys. 109, 123505 (2011).
http://dx.doi.org/10.1063/1.3594693
29.
29. J. C. Sturm, H. Manoharan, L. C. Lenchyshyn, M. L. W. Thewalt, N. L. Rowell, J.-P. Noël, and D. C. Houghton, Phys. Rev. Lett. 66, 13621365 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1362
30.
30. J. Weber and M. I. Alonso, Phys. Rev. B 40, 5683 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.5683
31.
31. A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627 (1964).
http://dx.doi.org/10.1021/ac60214a047
32.
32. C. Penn, F. Schäffler, G. Bauer, and S. Glutsch, Phys. Rev. B 59, 13314 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.13314
33.
33. Y.-H. Kuo and Y.-S. Li, Appl. Phys. Lett. 94, 121101 (2009).
http://dx.doi.org/10.1063/1.3106621
34.
34. J. J. Zhang, A. Rastelli, O. G. Schmidt, and G. Bauer, Semicond. Sci. Technol. 26, 014028 (2011).
http://dx.doi.org/10.1088/0268-1242/26/1/014028
35.
35. M. Wachter, K. Thonke, R. Sauer, F. Schäffler, H.-J. Herzog, and E. Kasper, Thin Solid Films 222, 1014 (1992).
http://dx.doi.org/10.1016/0040-6090(92)90027-9
36.
36.See supplementary material at http://dx.doi.org/10.1063/1.4923188 for the determination of the activation energies considering the dimensionalities of the initial and final states in the nanostructures.[Supplementary Material]
37.
37. S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, Appl. Phys. Lett. 71, 258 (1997).
http://dx.doi.org/10.1063/1.119514
38.
38. B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, Phys. Rev. B 72, 193306 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.193306
39.
39. T. U. Schülli, G. Vastola, M.-I. Richard, A. Malachias, G. Renaud, F. Uhlík, F. Montalenti, G. Chen, L. Miglio, F. Schäffler, and G. Bauer, Phys. Rev. Lett. 102, 025502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.025502
40.
40. M. Brehm, T. Suzuki, T. Fromherz, Z. Zhong, N. Hrauda, F. Hackl, J. Stangl, F. Schäffler, and G. Bauer, New J. Phys. 11, 063021 (2009).
http://dx.doi.org/10.1088/1367-2630/11/6/063021
41.
41. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, and D. Bimberg, Phys. Rev. B 61, 9944 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.9944
42.
42. S. A. Empedocles and M. G. Bawendi, Science 278, 2114 (1997).
http://dx.doi.org/10.1126/science.278.5346.2114
43.
43. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Science 273, 87 (1996).
http://dx.doi.org/10.1126/science.273.5271.87
44.
44. B. Patton, W. Langbein, and U. Woggon, Phys. Rev. B 68, 125316 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125316
45.
45. Ph. Lelong, K. Suzuki, G. Bastard, H. Sakaki, and Y. Arakawa, Physica E 7, 393 (2000).
http://dx.doi.org/10.1016/S1386-9477(99)00348-3
46.
46. M. Grydlik, F. Hackl, H. Groiss, M. Glaser, A. Halilovic, T. Fromherz, W. Jantsch, F. Schäffler, and M. Brehm, e-print arXiv:1505.03380.
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/25/10.1063/1.4923188
Loading
/content/aip/journal/apl/106/25/10.1063/1.4923188
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/25/10.1063/1.4923188
2015-06-25
2016-12-09

Abstract

We report photoluminescence (PL) experiments on individual SiGe quantum dots (QDs) that were epitaxially grown in a site-controlled fashion on pre-patterned Si(001) substrates. We demonstrate that the PL line-widths of single QDs decrease with excitation power to about 16 meV, a value that is much narrower than any of the previously reported PL signals in the SiGe/Si heterosystem. At low temperatures, the PL-intensity becomes limited by a 25 meV high potential-barrier between the QDs and the surrounding Ge wetting layer (WL). This barrier impedes QD filling from the WL which collects and traps most of the optically excited holes in this type-II heterosystem.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/25/1.4923188.html;jsessionid=1iA5T-V2H9uil-xe9KSQw-A3.x-aip-live-02?itemId=/content/aip/journal/apl/106/25/10.1063/1.4923188&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/25/10.1063/1.4923188&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/25/10.1063/1.4923188'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,