Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/26/10.1063/1.4923471
1.
1. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10967
2.
2. S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125328
3.
3. N. C. Giebink and S. R. Forrest, Phys. Rev. B 77, 235215 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235215
4.
4. C. Murawski, K. Leo, and M. C. Gather, Adv. Mater. 25, 6801 (2013).
http://dx.doi.org/10.1002/adma.201301603
5.
5. N. C. Giebink, B. W. D'Andrade, M. S. Weaver, P. B. MacKenzie, J. J. Brown, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 103, 044509 (2008).
http://dx.doi.org/10.1063/1.2884530
6.
6. N. C. Giebink, B. W. D'Andrade, M. S. Weaver, J. J. Brown, and S. R. Forrest, J. Appl. Phys. 105, 124514 (2009).
http://dx.doi.org/10.1063/1.3151689
7.
7. Y. Zhang, J. Lee, and S. R. Forrest, Nat. Commun. 5, 5008 (2014).
http://dx.doi.org/10.1038/ncomms6008
8.
8. Q. Wang, B. Sun, and H. Aziz, Adv. Funct. Mater. 24, 2975 (2014).
http://dx.doi.org/10.1002/adfm.201303840
9.
9. N. C. Erickson and R. J. Holmes, Adv. Funct. Mater. 24, 6074 (2014).
http://dx.doi.org/10.1002/adfm.201401009
10.
10. S. Wehrmeister, L. Jäger, T. Wehlus, A. F. Rausch, T. C. G. Reusch, T. D. Schmidt, and W. Brütting, Phys. Rev. Appl. 3, 024008 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.3.024008
11.
11. J. Scott, S. Karg, and S. Carter, J. Appl. Phys. 82, 1454 (1997).
http://dx.doi.org/10.1063/1.365923
12.
12. M. Schmeits and N. D. Nguyen, Phys. Status Solidi A 202, 2764 (2005).
http://dx.doi.org/10.1002/pssa.200521004
13.
13. N. D. Nguyen and M. Schmeits, Phys. Status Solidi A 203, 1901 (2006).
http://dx.doi.org/10.1002/pssa.200622014
14.
14. S. Barth, P. Müller, H. Riel, P. F. Seidler, W. Rieß, H. Vestweber, and H. Bässler, J. Appl. Phys. 89, 3711 (2001).
http://dx.doi.org/10.1063/1.1330766
15.
15. B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.818852
16.
16. Y. Zhang and S. R. Forrest, Chem. Phys. Lett. 590, 106 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.10.048
17.
17. A. K. Bansal, W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 330, 118 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.08.002
18.
18. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4923471 for the derivation of exciton-polaron EQE harmonic relations and comparison of AC direct and DC derivative-based harmonic analyses.[Supplementary Material]
20.
20. M. A. Lampert, Rep. Prog. Phys. 27, 329 (1964).
http://dx.doi.org/10.1088/0034-4885/27/1/307
21.
21. J. Kalinowski, W. Stampor, J. Mȩżyk, M. Cocchi, D. Virgili, V. Fattori, and P. Di Marco, Phys. Rev. B 66, 235321 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.235321
22.
22. J. Cho, E. F. Schubert, and J. K. Kim, Laser Photonics Rev. 7, 408 (2013).
http://dx.doi.org/10.1002/lpor.201200025
23.
23. F. Römer and B. Witzigmann, Opt. Express 22, A1440 (2014).
http://dx.doi.org/10.1364/OE.22.0A1440
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/26/10.1063/1.4923471
Loading
/content/aip/journal/apl/106/26/10.1063/1.4923471
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/26/10.1063/1.4923471
2015-06-30
2016-09-28

Abstract

Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/26/1.4923471.html;jsessionid=vWPFON-c8xTFOR6SeseQdwN_.x-aip-live-03?itemId=/content/aip/journal/apl/106/26/10.1063/1.4923471&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/26/10.1063/1.4923471&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/26/10.1063/1.4923471'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,