Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/3/10.1063/1.4905650
1.
1. H. Aarnio, P. Sehati, S. Braun, M. Nyman, M. P. de Jong, M. Fahlman, and R. Österbacka, Adv. Energy Mater. 1, 792 (2011).
http://dx.doi.org/10.1002/aenm.201100074
2.
2. G. F. Burkhard, E. T. Hoke, Z. M. Beiley, and M. D. Mcgehee, J. Phys. Chem. C 116, 26674 (2012).
http://dx.doi.org/10.1021/jp310821f
3.
3. V. Mihailetchi, L. Koster, J. Hummelen, and P. Blom, Phys. Rev. Lett. 93, 216601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.216601
4.
4. Z.-L. Guan, J. B. Kim, H. Wang, C. Jaye, D. A. Fischer, Y.-L. Loo, and A. Kahn, Org. Electron. 11, 1779 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.07.023
5.
5. S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. ( John Wiley & Sons, Inc., 2012).
6.
6. S. Lee, J.-H. Lee, K. H. Kim, S.-J. Yoo, T. G. Kim, J. W. Kim, and J.-J. Kim, Org. Electron. 13, 2346 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.06.039
7.
7. Y. Shen, L. Scudiero, and M. C. Gupta, IEEE J. Photovoltaics 2, 512 (2012).
http://dx.doi.org/10.1109/JPHOTOV.2012.2202877
8.
8. A. Wilke, P. Amsalem, J. Frisch, B. Bröker, A. Vollmer, and N. Koch, Appl. Phys. Lett. 98, 123304 (2011).
http://dx.doi.org/10.1063/1.3571286
9.
9. L. Lindell, D. Çakır, G. Brocks, M. Fahlman, and S. Braun, Appl. Phys. Lett. 102, 223301 (2013).
http://dx.doi.org/10.1063/1.4809567
10.
10. H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M. C. Lux-Steiner, and N. S. Sariciftci, Nano Lett. 5, 269 (2005).
http://dx.doi.org/10.1021/nl048176c
11.
11. E. J. Spadafora, R. Demadrille, B. Ratier, and B. Grévin, Nano Lett. 10, 3337 (2010).
http://dx.doi.org/10.1021/nl101001d
12.
12. K. Maturová, M. Kemerink, M. M. Wienk, D. S. H. Charrier, and R. A. J. Janssen, Adv. Funct. Mater. 19, 1379 (2009).
http://dx.doi.org/10.1002/adfm.200801283
13.
13. B. M. Dhar, G. S. Kini, G. Xia, B. J. Jung, N. Markovic, and H. E. Katz, Proc. Natl. Acad. Sci. U. S. A. 107, 3972 (2010).
http://dx.doi.org/10.1073/pnas.0910554107
14.
14. T. J. Dawidczyk, G. L. Johns, R. Ozgun, O. Alley, A. G. Andreou, N. Markovic, and H. E. Katz, Appl. Phys. Lett. 100, 073305 (2012).
http://dx.doi.org/10.1063/1.3684977
15.
15. T. J. Dawidczyk, J. F. Martínez Hardigree, G. L. Johns, R. Ozgun, O. Alley, A. G. Andreou, N. Markovic, and H. E. Katz, ACS Nano 8, 2714 (2014).
http://dx.doi.org/10.1021/nn4064067
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.4905650 for experimental details, additional data plots, and statistical analyses.[Supplementary Material]
17.
17. D. J. Bindl and M. S. Arnold, J. Phys. Chem. C 117, 2390 (2013).
http://dx.doi.org/10.1021/jp310983y
18.
18. R. M. Jain, R. Howden, K. Tvrdy, S. Shimizu, A. J. Hilmer, T. P. Mcnicholas, K. K. Gleason, and M. S. Strano, Adv. Mater. 24, 4436 (2012).
http://dx.doi.org/10.1002/adma.201202088
19.
19. M. J. Shea and M. S. Arnold, Appl. Phys. Lett. 102, 243101 (2013).
http://dx.doi.org/10.1063/1.4811359
20.
20. D. J. Bindl, A. S. Brewer, and M. S. Arnold, Nano Res. 4, 1174 (2011).
http://dx.doi.org/10.1007/s12274-011-0167-0
21.
21. T. Liu and A. Troisi, Adv. Mater. 25, 1038 (2013).
http://dx.doi.org/10.1002/adma.201203486
22.
22. B. V. Palermo, M. Palma, and P. Samorì, Adv. Mater. 18, 145 (2006).
http://dx.doi.org/10.1002/adma.200501394
23.
23. H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, and M. Niwano, Phys. Status Solidi A 201, 1075 (2004).
http://dx.doi.org/10.1002/pssa.200404346
24.
24. A. Doukkali, S. Ledain, C. Guasch, and J. Bonnet, Appl. Surf. Sci. 235, 507 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.03.249
25.
25. V. I. Arkhipov, P. Heremans, and H. Bässler, Appl. Phys. Lett. 82, 4605 (2003).
http://dx.doi.org/10.1063/1.1586456
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/3/10.1063/1.4905650
Loading
/content/aip/journal/apl/106/3/10.1063/1.4905650
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/3/10.1063/1.4905650
2015-01-20
2016-09-25

Abstract

Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/3/1.4905650.html;jsessionid=RZq7Pxing1oiS-Vs_ixiijGk.x-aip-live-06?itemId=/content/aip/journal/apl/106/3/10.1063/1.4905650&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/3/10.1063/1.4905650&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/3/10.1063/1.4905650'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,