Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. D. McCaig, A. M. Rajnicek, B. Song, and M. Zhao, Physiol. Rev. 85(3), 943978 (2005).
2. C. W. Scott and M. F. Peters, Drug Discovery Today 15(17–18), 704716 (2010).
3. F. Alexander, D. Price, and S. Bhansali, IEEE Rev. Biomed. Eng. 6, 6376 (2013).
4. I. Giaever and C. R. Keese, Proc. Natl. Acad. Sci. U. S. A. 81(12), 37613764 (1984).
5. I. Giaever and C. R. Keese, Nature 366(6455), 591592 (1993).
6. I. Giaever and C. R. Keese, Proc. Natl. Acad. Sci. U. S. A. 88(17), 78967900 (1991).
7. J. Wegener, Nanotechnology ( Wiley-VCH Verlag GmbH & Co. KGaA, 2010).
8. K. Benson, S. Cramer, and H.-J. Galla, Fluids Barriers CNS 10(1), 5 (2013).
9. C. R. Keese, J. Wegener, and I. Giaever, Genet. Eng. News 25(3), 4243 (2005).
10. P. Mitra, C. R. Keese, and I. Giaever, BioTechniques 11(4), 504510 (1991).
11. C. R. Keese, J. Wegener, S. R. Walker, and I. Giaever, Proc. Natl. Acad. Sci. U. S. A. 101(6), 15541559 (2004).
12. J. Wegener, C. R. Keese, and I. Giaever, Exp. Cell Res. 259(1), 158166 (2000).
13. J. Wegener, D. Abrams, W. Willenbrink, H.-J. Galla, and A. Janshoff, BioTechniques 37(4), 590597 (2004).
14. C. Xiao and J. H. Luong, Toxicol. Appl. Pharmacol. 206(2), 102112 (2005).
15. B. F. De Blasio, M. Laane, T. Walmann, and I. Giaever, BioTechniques 36(4), 650662 (2004).
16. M. W. Jackson and T. P. Gordon, J. Immunol. Methods 361(1–2), 3136 (2010).
17. M. Ramuz, A. Hama, M. Huerta, J. Rivnay, P. Leleux, and R. M. Owens, Adv. Mater. 26(41), 70837090 (2014).
18. L. H. Jimison, S. A. Tria, D. Khodagholy, M. Gurfinkel, E. Lanzarini, A. Hama, G. G. Malliaras, and R. M. Owens, Adv. Mater. 24(44), 59195923 (2012).
19. D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux, L. H. Jimison, E. Stavrinidou, T. Herve, S. Sanaur, R. M. Owens, and G. G. Malliaras, Nat. Commun. 4, 2133 (2013).
20. D. Khodagholy, M. Gurfinkel, E. Stavrinidou, P. Leleux, T. Herve, S. Sanaur, and G. G. Malliaras, Appl. Phys. Lett. 99(16), 163304 (2011).
21. C. M. Lo, C. R. Keese, and I. Giaever, Biophys. J. 69(6), 28002807 (1995).
22. S. Amasheh, T. Schmidt, M. Mahn, P. Florian, J. Mankertz, S. Tavalali, A. Gitter, J. D. Schulzke, and M. Fromm, Cell Tissue Res. 321(1), 8996 (2005).
23. J. D. Dukes, P. Whitley, and A. D. Chalmers, BMC Cell Biol. 12, 43 (2011).
24. G. C. Faria, D. T. Duong, C. Polyzoidis, J. Rivnay, S. Logothetidis, R. M. Owens, G. G. Malliaras, and A. Salleo, MRS Commun. 4(4), 189194 (2014).
25.nanoAnalytics, Technical Note: “ CellZscope–How it Works,” see (last accessed January 1, 2015).
26. D. A. Bernards and G. G. Malliaras, Adv. Funct. Mater. 17(17), 35383544 (2007).
27. E. Stavrinidou, P. Leleux, H. Rajaona, M. Fiocchi, S. Sanaur, and G. G. Malliaras, J. Appl. Phys. 113(24), 244501 (2013).
28. B. R. Stevenson, J. M. Anderson, D. A. Goodenough, and M. S. Mooseker, J. Cell Biol. 107(6), 24012408 (1988).
29. C. M. Lo, C. R. Keese, and I. Giaever, Exp. Cell Res. 250(2), 576580 (1999).
30. D. A. Bernards, G. G. Malliaras, G. E. S. Toombes, and S. M. Gruner, Appl. Phys. Lett. 89(5), 053505 (2006).

Data & Media loading...


Article metrics loading...



Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd