Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/4/10.1063/1.4907325
1.
1. Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.-H. Yoon, J. Kim, M. S. Oh, G.-R. Yi, Y.-Y. Noh, and S. K. Park, Nature 489, 128 (2012).
http://dx.doi.org/10.1038/nature11434
2.
2. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Bao, and Z. N. Wudl, Nature 444, 913 (2006).
http://dx.doi.org/10.1038/nature05427
3.
3. X. Yu, N. Zhou, S. Han, H. Lin, D. B. Buchholz, J. Yu, P. H. Chang, T. J. Marks, and A. Facchetti, J. Mater. Chem. C 1, 6532 (2013).
http://dx.doi.org/10.1039/c3tc31412j
4.
4. W. Huang, X. Yu, H. Fan, and J. Yu, Appl. Phys. Lett. 105, 093302 (2014).
http://dx.doi.org/10.1063/1.4895121
5.
5. Y. Su, M. Ouyang, P. Liu, Z. Luo, W. Xie, and J. Xu, ACS Appl. Mater. Interfaces 5, 4960 (2013).
http://dx.doi.org/10.1021/am4006447
6.
6. M. Marinkovic, D. Belaineh, V. Wagner, and D. Knipp, Adv. Mater. 24, 4005 (2012).
http://dx.doi.org/10.1002/adma.201201311
7.
7. H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, Adv. Funct. Mater. 20, 1371 (2010).
http://dx.doi.org/10.1002/adfm.200902236
8.
8. J. Zhang, Y. Zhao, Z. Wei, Y. Sun, Y. He, C. Di, W. Xu, W. Hu, Y. Liu, and D. Zhu, Adv. Funct. Mater. 21, 786 (2011).
http://dx.doi.org/10.1002/adfm.201001583
9.
9. T. D. Nguyen, A. Labed, R. E. Zein, S. Lavandier, F. Bedu, I. Ozerov, H. Dallaporta, J.-M. Raimundo, and A. M. Charrier, Biosens. Bioelectron. 54, 571 (2014).
http://dx.doi.org/10.1016/j.bios.2013.11.051
10.
10. X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck, and J.-L. Brédas, J. Am. Chem. Soc. 124, 8131 (2002).
http://dx.doi.org/10.1021/ja025673r
11.
11. J. Lee, J. H. Park, Y. T. Lee, P. J. Jeon, H. S. Lee, S. H. Nam, Y. Yi, Y. Lee, and S. Im, ACS Appl. Mater. Interfaces 6, 4965 (2014).
http://dx.doi.org/10.1021/am405998d
12.
12. M. L. Hammock, O. Knopfmacher, B. D. Naab, J. B.-H. Tok, and Z. Bao, ACS Nano 7, 3970 (2013).
http://dx.doi.org/10.1021/nn305903q
13.
13. Y. Zhang, P. Zalar, C. Kim, S. Collins, G. C. Bazan, and T.-Q. Nguyen, Adv. Mater. 24, 4255 (2012).
http://dx.doi.org/10.1002/adma.201201248
14.
14. W. Shi, J. Yu, W. Huang, and Y. Zheng, J. Phys. D: Appl. Phys. 47, 205402 (2014).
http://dx.doi.org/10.1088/0022-3727/47/20/205402
15.
15. J. Lee, S.-W. Min, H. S. Lee, Y. Yi, and S. Im, J. Mater. Chem. C 2, 5411 (2014).
http://dx.doi.org/10.1039/c4tc00679h
16.
16. J. J. Champoux, Annu. Rev. Biochem. 70, 369 (2001).
http://dx.doi.org/10.1146/annurev.biochem.70.1.369
17.
17. M. Berggren and A. Richter-Dahlfors, Adv. Mater. 19, 3201 (2007).
http://dx.doi.org/10.1002/adma.200700419
18.
18. C. Yumusak, T. B. Singh, N. S. Sariciftci, and J. G. Grote, Appl. Phys. Lett. 95, 263304 (2009).
http://dx.doi.org/10.1063/1.3278592
19.
19. M. Barra, D. Viggiano, R. D. Capua, F. D. Girolamo, F. Santoro, M. Taglialatela, and A. Cassinese, J. Appl. Phys. 111, 034702 (2012).
http://dx.doi.org/10.1063/1.3682109
20.
20. P. Zalar, D. Kamkar, R. Naik, F. Ouchen, J. G. Grote, G. C. Bazan, and T.-Q. Nguyen, J. Am. Chem. Soc. 133, 11010 (2011).
http://dx.doi.org/10.1021/ja201868d
21.
21. D. J. Gundlach, T. N. Jackson, D. G. Schlom, and S. F. Nelson, Appl. Phys. Lett. 74, 3302 (1999).
http://dx.doi.org/10.1063/1.123325
22.
22. X. Wang, T. Someya, T. Sekitani, T. Kato, and S. Iba, Mol. Cryst. Liq. Cryst. 462, 29 (2007).
http://dx.doi.org/10.1080/15421400601009344
23.
23. E. M. Heckman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, Appl. Phys. Lett. 87, 211115 (2005).
http://dx.doi.org/10.1063/1.2135205
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4907325 for the output characteristics of OFETs and the performance of OFETs processed with different volatile times and fabrication processes.[Supplementary Material]
25.
25. X. Yu, J. Zhou, J. Huang, and Y. Jiang, Appl. Phys. Lett. 99, 063306 (2011).
http://dx.doi.org/10.1063/1.3624586
26.
26. A. Kurokawa, Y. Matsumoto, K. Shibamoto, K. Kajimoto, H. Osuga, H. Yamakodo, K. Uno, and I. Tanaka, Appl. Phys. Lett. 95, 263307 (2009).
http://dx.doi.org/10.1063/1.3280050
27.
27. R. T. Tung, Phys. Rev. Lett. 84, 6078 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6078
28.
28. T. Shaymurat, Q. Tang, Y. Tong, L. Dong, and Y. Liu, Adv. Mater. 25, 2269 (2013).
http://dx.doi.org/10.1002/adma.201204509
29.
29. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
http://dx.doi.org/10.1039/b909902f
30.
30. Y. Qiu, Y. Hu, G. Dong, L. Wang, J. Xie, and Y. Ma, Appl. Phys. Lett. 83, 1644 (2003).
http://dx.doi.org/10.1063/1.1604193
31.
31. Z.-T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, Appl. Phys. Lett. 81, 4643 (2002).
http://dx.doi.org/10.1063/1.1527233
32.
32. M. H. Yoon, C. Kim, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 128, 12851 (2006).
http://dx.doi.org/10.1021/ja063290d
33.
33. W. Huang, J. Yu, X. Yu, and W. Shi, Org. Electron. 14, 3453 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.09.018
34.
34. N. Liu, Y. Hu, J. Zhang, J. Cao, Y. Liu, and J. Wang, Org. Electron. 13, 2781 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.08.010
35.
35. Y. Zheng, R. Wu, W. Shi, Z. Guan, and J. Yu, Sol. Energy Mater. Sol. Cells 111, 200 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.01.011
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/4/10.1063/1.4907325
Loading
/content/aip/journal/apl/106/4/10.1063/1.4907325
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/4/10.1063/1.4907325
2015-01-30
2016-12-09

Abstract

High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm2/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/4/1.4907325.html;jsessionid=I00ntxQ5EZHdw2IIbcrQy88B.x-aip-live-02?itemId=/content/aip/journal/apl/106/4/10.1063/1.4907325&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/4/10.1063/1.4907325&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/4/10.1063/1.4907325'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,