Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/5/10.1063/1.4907317
1.
1. K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, and J. Kasahara, IEEE Trans. Electron Devices 52, 1519 (2005).
http://dx.doi.org/10.1109/TED.2005.850954
2.
2. K. Myny, S. Steudel, S. Smout, P. Vicca, F. Furthner, B. vander Putten, A. K. Tripathi, G. H. Gelinck, J. Genoe, W. Dehaene, and P. Heremans, Org. Electron. 11, 1176 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.013
3.
3. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science 326, 1516 (2009).
http://dx.doi.org/10.1126/science.1179963
4.
4. T. Yokota, T. Nakagawa, T. Sekitani, Y. Noguchi, K. Fukuda, U. Zschieschang, H. Klauk, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Appl. Phys. Lett. 98, 193302 (2011).
http://dx.doi.org/10.1063/1.3589967
5.
5. K. Myny, M. J. Beenhakkers, N. A. J. M. van Aerle, G. H. Gelinck, J. Genoe, W. Dehaene, and P. Heremans, IEEE J. Solid-State Circuits 46, 1223 (2011).
http://dx.doi.org/10.1109/JSSC.2011.2116490
6.
6. S. Iba, T. Sekitani, Y. Kato, T. Someya, H. Kawaguchi, M. Takamiya, T. Sakurai, and S. Takagi, Appl. Phys. Lett. 87, 023509 (2005).
http://dx.doi.org/10.1063/1.1995958
7.
7. K. Hizu, T. Sekitani, T. Someya, and J. Otsuki, Appl. Phys. Lett. 90, 093504 (2007).
http://dx.doi.org/10.1063/1.2709991
8.
8. A. Wang, I. Kymissis, V. Bulović, and A. I. Akinwande, IEEE Electron Devices 53, 9 (2006).
http://dx.doi.org/10.1109/TED.2005.860633
9.
9. A. Wang, I. Kymissis, V. Bulović, and A. I. Akinwande, Appl. Phys. Lett. 89, 112109 (2006).
http://dx.doi.org/10.1063/1.2349299
10.
10. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater. 3, 317 (2004).
http://dx.doi.org/10.1038/nmat1105
11.
11. U. Zschieschang, F. Ante, M. Schlörholz, M. Schmidt, K. Kern, and H. Klauk, Adv. Mater. 22, 4489 (2010).
http://dx.doi.org/10.1002/adma.201001502
12.
12. A. Dezieck, O. Acton, K. Leong, E. E. Oren, H. Ma, C. Tamerler, M. Sarikaya, and A. K.-Y. Jen, Appl. Phys. Lett. 97, 013307 (2010).
http://dx.doi.org/10.1063/1.3459978
13.
13. M. Egginger, M. Irimia-Vladu, R. Schowödiauer, A. Tanda, I. Frischauf, S. Bauer, and N. S. Sariciftci, Adv. Mater. 20, 1018 (2008).
http://dx.doi.org/10.1002/adma.200701479
14.
14. E. Orgiu, S. Locci, B. Fraboni, E. Scavetta, P. Lugli, and A. Bonfiglio, Org. Electron. 12, 477485 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.12.014
15.
15. D. K. Hwang, K. Lee, J. H. Kim, S. Im, J. H. Park, and E. Kim, Appl. Phys. Lett. 89, 093507 (2006).
http://dx.doi.org/10.1063/1.2345243
16.
16. J. Park, H. M. Kim, D. W. Kim, and J. S. Choi, Appl. Phys. Lett. 97, 093301 (2010).
http://dx.doi.org/10.1063/1.3486180
17.
17. Y. Chung, O. Johnson, M. Deal, Y. Nishi, B. Murmann, and Z. Bao, Appl. Phys. Lett. 101, 063304 (2012).
http://dx.doi.org/10.1063/1.4739511
18.
18. D. Kumaki, Y. Fujisaki, and S. Tokito, Org. Electron. 14, 475478 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.12.002
19.
19. D. Kumaki, T. Umeda, and S. Tokito, Appl. Phys. Lett. 92, 013301 (2008).
http://dx.doi.org/10.1063/1.2828711
20.
20. H. B. Michaelson, IBM J. Res. Dev. 22, 72 (1978).
http://dx.doi.org/10.1147/rd.221.0072
21.
21. Y. Takeda, Y. Yoshimura, Y. Kobayashi, D. Kumaki, K. Fukuda, and S. Tokito, Org. Electron. 14, 33623370 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.10.006
22.
22. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices ( Wiley, New York, 2007).
23.
23. W. L. Kalb, F. Meier, K. Mattenberger, and B. Batlogg, Phys. Rev. B 76, 184112 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.184112
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/5/10.1063/1.4907317
Loading
/content/aip/journal/apl/106/5/10.1063/1.4907317
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/5/10.1063/1.4907317
2015-02-02
2016-09-30

Abstract

We controlled the threshold voltage of organic thin-film transistors (TFTs) by treating only the gate electrode surface with a MoO aqueous solution and used them to build inverter circuits. The threshold voltage was changed by varying the concentration of the MoO aqueous solution. A strong correlation between the work function of the gate electrode and the threshold voltage was observed. The threshold voltage of one of the two organic TFT devices in the inverter circuit was selectively changed by +2.3 V by reducing the concentration of the MoOx solution. We controlled the switching voltage of p-type organic inverter circuits and obtained excellent inverter characteristics. These results indicate that using a MoOx aqueous solution to control the threshold voltage is very useful for integrated circuits applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/5/1.4907317.html;jsessionid=ye_IXU_kz3eqPAMT-1FWqIRr.x-aip-live-02?itemId=/content/aip/journal/apl/106/5/10.1063/1.4907317&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/5/10.1063/1.4907317&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/5/10.1063/1.4907317'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,