Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/5/10.1063/1.4907398
1.
1. J. Schroers, JOM 57, 35 (2005).
http://dx.doi.org/10.1007/s11837-005-0093-2
2.
2. G. Kumar, A. Desai, and J. Schroers, Adv. Mater. 23, 461 (2011).
http://dx.doi.org/10.1002/adma.201002148
3.
3. H. Kimura and T. Matsumoto, Amorphous Metallic Alloys ( Butterworths, London, 1983).
4.
4. P. Donovan, Mater. Sci. Eng. 98, 487 (1988).
http://dx.doi.org/10.1016/0025-5416(88)90213-3
5.
5. P. Donovan, Acta Metall. 37, 445 (1989).
http://dx.doi.org/10.1016/0001-6160(89)90228-9
6.
6. H. Bruck, T. Christian, A. Rosakis, and W. Johnson, Scr. Metall. Mater. 30, 429 (1994).
http://dx.doi.org/10.1016/0956-716X(94)90598-3
7.
7. R. Schwarz, “ Bulk Amorphous Alloys,” in Intermetallic Compounds - Principles and Practice: Progress, Volume 3, edited by J. H. Westbrook and R. L. Fleischer ( John Wiley & Sons Ltd), Chap. 32, pp. 681705.
http://dx.doi.org/10.1002/0470845856.ch32
8.
8. C. Schuh and A. Lund, Nat. Mater. 2, 449 (2003).
http://dx.doi.org/10.1038/nmat918
9.
9. H. Ruan, L. Zhang, and J. Lu, Int. J. Solids Struct. 48, 3112 (2011).
http://dx.doi.org/10.1016/j.ijsolstr.2011.07.004
10.
10. L. Anand and C. Su, J. Mech. Phys. Solids 53, 1362 (2005).
http://dx.doi.org/10.1016/j.jmps.2004.12.006
11.
11. M. Zhao and M. Li, Appl. Phys. Lett. 93, 241906 (2008).
http://dx.doi.org/10.1063/1.3050462
12.
12. M. Vargonen, L. Huang, and Y. Shi, J. Non-Cryst. Solids 358, 3488 (2012).
http://dx.doi.org/10.1016/j.jnoncrysol.2012.05.021
13.
13. Y. Q. Cheng, E. Ma, and H. W. Sheng, Phys. Rev. Lett. 102, 245501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.245501
14.
14. D. Xu, G. Duan, and W. L. Johnson, Phys. Rev. Lett. 92, 245504 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.245504
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.4907398 for further details on the set-up of the MD simulations, sample preparation techniques as well as results for additional alloy systems.[Supplementary Material]
16.
16. J. Rottler and M. Robbins, Phys. Rev. E 64, 051801 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.051801
17.
17. P. De Hey, J. Sietsma, and A. van den Beukel, Acta Mater. 46, 5873 (1998).
http://dx.doi.org/10.1016/S1359-6454(98)00234-1
18.
18. G. He, J. Lu, Z. Bian, D. Chen, G. Chen, G. Tu, and G. Chen, Mater. Trans. 42, 356 (2001).
http://dx.doi.org/10.2320/matertrans.42.356
19.
19. T. Mukai, T. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Intermetallics 10, 1071 (2002).
http://dx.doi.org/10.1016/S0966-9795(02)00137-1
20.
20. Z. Zhang, J. Eckert, and L. Schultz, Acta Mater. 51, 1167 (2003).
http://dx.doi.org/10.1016/S1359-6454(02)00521-9
21.
21. H. Bruck, A. Rosakis, and W. Johnson, J. Mater. Res. 11, 503 (1996).
http://dx.doi.org/10.1557/JMR.1996.0060
22.
22. J. Lu, G. Ravichandran, and W. Johnson, Acta Mater. 51, 3429 (2003).
http://dx.doi.org/10.1016/S1359-6454(03)00164-2
23.
23. P. Thamburaja, J. Mech. Phys. Solids 59, 1552 (2011).
http://dx.doi.org/10.1016/j.jmps.2011.04.018
24.
24. S. Bargmann, T. Xiao, and B. Klusemann, Philos. Mag. 94, 1 (2014).
http://dx.doi.org/10.1080/14786435.2013.838326
25.
25. M. Jirasek and Z. Bazant, Inelastic Analysis of Structures ( Wiley, 2001).
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/5/10.1063/1.4907398
Loading
/content/aip/journal/apl/106/5/10.1063/1.4907398
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/5/10.1063/1.4907398
2015-02-04
2016-12-09

Abstract

Metallic glasses have vast potential applications as components in microelectronics- and nanoelectronics-type devices. The design of such components through computer simulations requires the input of a faithful set of continuum-based constitutive equations. However, one long-standing controversial issue in modeling the plastic behavior of metallic glasses at the continuum level is the use of the most appropriate plastic yield criterion and flow rule. Guided by a series of molecular dynamics simulations conducted at low-homologous temperatures under homogeneous deformations, we quantitatively prove that the continuum plastic behavior in metallic glasses is most accurately described by a von Mises-type plastic yield criterion and flow rule.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/5/1.4907398.html;jsessionid=pdYc6hWlOMe_ljJjpnbSnBCK.x-aip-live-03?itemId=/content/aip/journal/apl/106/5/10.1063/1.4907398&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/5/10.1063/1.4907398&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/5/10.1063/1.4907398'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,