Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn, and B. Kippelen, “ A universal method to produce low-work function electrodes for organic electronics,” Science 336, 327332 (2012).
2. G. Li, R. Zhu, and Y. Yang, “ Polymer solar cells,” Nat. Photonics 6, 153161 (2012).
3. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “ Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6, 591595 (2012).
4. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “ Polymer–fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 38393856 (2010).
5. R. Søndergaard, M. Hösel, D. Angmo, T. T. Larsen-Olsen, and F. C. Krebs, “ Roll-to-roll fabrication of polymer solar cells,” Mater. Today 15, 3649 (2012).
6. J. You, L. Dou, Z. Hong, G. Li, and Y. Yang, “ Recent trends in polymer tandem solar cells research,” Prog. Polym. Sci. 38, 19091928 (2013).
7. A. R. B. Mohd Yusoff, D. Kim, H. P. Kim, F. K. Shneider, W. J. da Silva, and J. Jang, “ High efficiency solution processed polymer inverted triple-junction solar cell exhibiting conversion efficiency of 11.83%,” Energy Environ. Sci. 8, 303 (2014).
8. C.-C. Chen, W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, “ An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%,” Adv. Mater. 26, 56705677 (2014).
9. T. R. Andersen, H. F. Dam, M. Hosel, M. Helgesen, J. E. Carle, T. T. Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaitre, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Valimaki, M. Vilkman, R. R. Søndergaard, M. Jorgensen, C. J. Brabec, and F. C. Krebs, “ Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules,” Energy Environ. Sci. 7, 29252933 (2014).
10. J. Gilot, M. M. Wienk, and R. A. J. Janssen, “ Double and triple junction polymer solar cells processed from solution,” Appl. Phys. Lett. 90, 143512 (2007).
11. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “ Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222225 (2007).
12. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, “ A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
13. S. Esiner, H. van Eersel, M. M. Wienk, and R. A. J. Janssen, “ Triple junction polymer solar cells for photoelectrochemical water splitting,” Adv. Mater. 25, 29322936 (2013).
14. Y. Zhou, C. Fuentes-Hernandez, J. W. Shim, T. M. Khan, and B. Kippelen, “ High performance polymeric charge recombination layer for organic tandem solar cells,” Energy Environ. Sci. 5, 9827 (2012).
15. J.-H. Kim, C. E. Song, B. Kim, I.-N. Kang, W. S. Shin, and D.-H. Hwang, “ Thieno[3,2-b]thiophene-Substituted Benzo[1,2-b:4,5-b′]dithiophene as a promising building block for low bandgap semiconducting polymers for high-performance single and tandem organic photovoltaic cells,” Chem. Mater. 26, 12341242 (2013).
16. J. Lee, H. Kang, J. Kong, and K. Lee, “ A depletion-free, ionic, self-assembled recombination layer for tandem polymer solar cells,” Adv. Energy Mater. 4, 1301226 (2014).
17. D. Gupta, M. M. Wienk, and R. A. J. Janssen, “ Indium tin oxide-free tandem polymer solar cells on opaque substrates with top illumination,” ACS Appl. Mater. Interfaces 6, 1393713944 (2014).
18. D. Angmo, H. F. Dam, T. R. Andersen, N. K. Zawacka, M. V. Madsen, J. Stubager, F. Livi, R. Gupta, M. Helgesen, J. E. Carlé, T. T. Larsen-Olsen, G. U. Kulkarni, E. Bundgaard, and F. C. Krebs, “ All-solution-processed, ambient method for ito-free, roll-coated tandem polymer solar cells using solution-processed metal films,” Energy Technol. 2, 651659 (2014).
19. J. M. Mativetsky and Y.-L. Loo, “ Modular construction and deconstruction of organic solar cells,” AIChE J. 58, 32803288 (2012).
20. Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, “ Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination,” Proc. Natl. Acad. Sci. 99, 1025210256 (2002).
21. J. K. Kim, W. Kim, D. H. Wang, H. Lee, S. M. Cho, D. G. Choi, and J. H. Park, “ Layer-by-layer all-transfer-based organic solar cells,” Langmuir 29, 53775382 (2013).
22. Y. Zhou, T. M. Khan, J. W. Shim, A. Dindar, C. Fuentes-Hernandez, and B. Kippelen, “ All-plastic solar cells with a high photovoltaic dynamic range,” J. Mater. Chem. A 2, 3492 (2014).
23. Y. Zhou, T. M. Khan, J.-C. Liu, C. Fuentes-Hernandez, J. W. Shim, E. Najafabadi, J. P. Youngblood, R. J. Moon, and B. Kippelen, “ Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination,” Org. Electron. 15, 661666 (2014).
24. D. Gupta, M. M. Wienk, and R. A. Janssen, “ Efficient polymer solar cells on opaque substrates with a laminated PEDOT: PSS top electrode,” Adv. Energy Mater. 3, 782787 (2013).
25. X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, “ High-performance metal-free solar cells using stamp transfer printed vapor phase polymerized poly(3,4-Ethylenedioxythiophene) top anodes,” Adv. Funct. Mater. 22, 14541460 (2012).
26. Y. Kim, H. Kim, S. Graham, A. Dyer, and J. R. Reynolds, “ Durable polyisobutylene edge sealants for organic electronics and electrochemical devices,” Sol. Energy Mater. Sol. Cells 100, 120125 (2012).
27. Y. Zhou, H. Cheun, S. Choi, W. J. Potscavage, C. Fuentes-Hernandez, and B. Kippelen, “ Indium tin oxide-free and metal-free semitransparent organic solar cells,” Appl. Phys. Lett. 97, 153304 (2010).
28. S. Sista, Z. Hong, L.-M. Chen, and Y. Yang, “ Tandem polymer photovoltaic cells—current status, challenges and future outlook,” Energy Environ. Sci. 4, 1606 (2011).

Data & Media loading...


Article metrics loading...



We report on vacuum-free and metal electrode–free organic tandem solar cells that use conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode. The PEDOT:PSS top electrode was deposited via film-transfer lamination that does not need high-vacuum processing. The fabricated tandem solar cells exhibit an open-circuit voltage of 1.62 V, which is nearly the sum of the of individual subcells, a high fill factor up to 0.72, and averaged power conversion efficiency of 3.6% under 100 mW cm−2 AM 1.5 illumination. The effect of the patterning of charge recombination layer and electrodes on the device performance has also been discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd