Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. G. Gordon, “ Criteria for choosing transparent conductors,” MRS Bull. 25, 5257 (2000).
2. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “ A roadmap for graphene,” Nature 490, 192200 (2012).
3. J. Hwang, H. Kyw Choi, J. Moon, T. Yong Kim, J.-W. Shin, C. Woong Joo, J.-H. Han, D.-H. Cho, J. Woo Huh, S.-Y. Choi et al., “ Multilayered graphene anode for blue phosphorescent organic light emitting diodes,” Appl. Phys. Lett. 100, 133304 (2012).
4. N. Li, S. Oida, G. S. Tulevski, S.-J. Han, J. B. Hannon, D. K. Sadana, and T.-C. Chen, “ Efficient and bright organic light-emitting diodes on single-layer graphene electrodes,” Nat. Commun. 4, 2294 (2013).
5. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “ Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett. 95, 063302 (2009).
6. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “ Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano 4, 4348 (2010).
7. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard et al., “ Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722726 (2010).
8. T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “ Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96, 133301 (2010).
9. H. Park, P. Brown, V. Bulović, and J. Kong, “ Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes,” Nano Lett. 12, 133 (2011).
10. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “ Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6, 105110 (2012).
11. Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “ Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23, 15141518 (2011).
12. P. R. Kidambi, C. Ducati, B. Dlubak, D. Gardiner, R. S. Weatherup, M. Martin, P. Seneor, H. Coles, and S. Hofmann, “ The parameter space of graphene chemical vapor deposition on polycrystalline Cu,” J. Phys. Chem. C 116, 2249222501 (2012).
13. P. R. Kidambi, B. C. Bayer, R. Blume, Z.-J. Wang, C. Baehtz, R. S. Weatherup, M.-G. Willinger, R. Schloegl, and S. Hofmann, “ Observing graphene grow: Catalyst-graphene interactions during scalable graphene growth on polycrystalline copper,” Nano Lett. 13, 47694778 (2013).
14. P. R. Kidambi, B. C. Bayer, R. S. Weatherup, R. Ochs, C. Ducati, D. V. Szabó, and S. Hofmann, “ Hafnia nanoparticles—A model system for graphene growth on a dielectric,” Phys. Status Solidi RRL 5, 341343 (2011).
15. R. Blume, P. R. Kidambi, B. C. Bayer, R. S. Weatherup, Z.-J. Wang, G. Weinberg, M.-G. Willinger, M. Greiner, S. Hofmann, A. Knop-Gericke et al., “ The influence of intercalated oxygen on the properties of graphene on polycrystalline cu under various environmental conditions,” Phys. Chem. Chem. Phys. 16, 2598926003 (2014).
16. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi et al., “ Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process,” Appl. Phys. Lett. 102, 023112 (2013).
17. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Il Song et al., “ Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5, 574578 (2010).
18. J. Meyer, P. R. Kidambi, B. C. Bayer, C. Weijtens, A. Kuhn, A. Centeno, A. Pesquera, A. Zurutuza, J. Robertson, and S. Hofmann, “ Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes,” Sci. Rep. 4, 5380 (2014).
19. A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “ Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2, 6940 (2014).
20. B. Dlubak, P. R. Kidambi, R. S. Weatherup, S. Hofmann, and J. Robertson, “ Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition,” Appl. Phys. Lett. 100, 173113 (2012).
21. J. B. Bult, R. Crisp, C. L. Perkins, and J. L. Blackburn, “ Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films,” ACS Nano 7, 72517261 (2013).
22. D.-Y. Wang, I. Huang, P. Ho, S. Li, Y. Yeh, D. Wang, W.-L. Chen, Y. Lee, Y. Chang, C.-C. Chen et al., “ Clean-lifting transfer of large-area residual-free graphene films,” Adv. Mater. 25, 45214526 (2013).
23. R. Degl'Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “ Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8, 25482554 (2014).
24. H. Butt, P. R. Kidambi, B. Dlubak, Y. Montelongo, A. Palani, G. A. J. Amaratunga, S. Hofmann, and T. D. Wilkinson, “ Visible diffraction from graphene and its application in holograms,” Adv. Opt. Mater. 1, 869874 (2013).
25. S. Badhwar, J. Sibik, P. R. Kidambi, H. E. Beere, J. Axel Zeitler, S. Hofmann, and D. A. Ritchie, “ Intrinsic terahertz plasmon signatures in chemical vapour deposited graphene,” Appl. Phys. Lett. 103, 121110 (2013).
26. R. Degl'Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “ Terahertz optical modulator based on metamaterial split-ring resonators and graphene,” Opt. Eng. 53, 057108 (2014).
27. J. Baltazar, H. Sojoudi, S. A. Paniagua, S. Zhang, R. A. Lawson, S. R. Marder, S. Graham, L. M. Tolbert, and C. L. Henderson, “ Photochemical doping and tuning of the work function and dirac point in graphene using photoacid and photobase generators,” Adv. Funct. Mater. 24, 51475156 (2014).
28. K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “ Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology 21, 285205 (2010).
29. Q. Wu, Y. Zhao, G. Hong, J. Ren, C. Wang, and S. T. Lee, “ Electronic structure of MoO 3-X/graphene interface,” Carbon 65, 46 (2013).
30. I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, and M. F. Craciun, “ Novel highly conductive and transparent graphene-based conductors,” Adv. Mater. 24, 28442849 (2012).
31. J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, “ Transition metal oxides for organic electronics: Energetics, device physics and applications,” Adv. Mater. 24, 54085427 (2012).
32. P. R. Kidambi, R. Blume, J. Kling, J. B. Wagner, C. Baehtz, R. S. Weatherup, R. Schloegl, B. C. Bayer, and S. Hofmann, “ In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper,” Chem. Mater. 26(22), 63806392 (2014).
33.See supplementary material at for Raman spectra showing degradation in quality of graphene underneath the MoO3 post-treated at 100 W for 60s O2 plasma treatment. XPS C1s and W4f data of graphene with a 15 nm WO3 protective layer.[Supplementary Material]
34. J. Meyer, T. Winkler, S. Hamwi, S. Schmale, H.-H. Johannes, T. Weimann, P. Hinze, W. Kowalsky, and T. Riedl, “ Transparent inverted organic light-emitting diodes with a tungsten oxide buffer layer,” Adv. Mater. 20, 38393843 (2008).
35. H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “ Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
36. J. Meyer, P. Görrn, S. Hamwi, H.-H. Johannes, T. Riedl, and W. Kowalsky, “ Indium-free transparent organic light emitting diodes with al doped zno electrodes grown by atomic layer and pulsed laser deposition,” Appl. Phys. Lett. 93, 073308 (2008).
37. Y. Guo and J. Robertson, “ Origin of the high work function and high conductivity of MoO3,” Appl. Phys. Lett. 105, 222110 (2014).

Data & Media loading...


Article metrics loading...



Using multi-functional oxide films, we report on the development of an integration strategy for scalable manufacturing of graphene-based transparent conducting electrodes (TCEs) for organic electronics. A number of fundamental and process challenges exists for efficient graphene-based TCEs, in particular, environmentally and thermally stable doping, interfacial band engineering for efficient charge injection/extraction, effective wetting, and process compatibility including masking and patterning. Here, we show that all of these challenges can be effectively addressed at once by coating graphene with a thin (>10 nm) metal oxide (MoO or WO) layer. We demonstrate graphene electrode patterning without the need for conventional lithography and thereby achieve organic light emitting diodes with efficiencies exceeding those of standard indium tin oxide reference devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd