Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/7/10.1063/1.4909530
1.
1. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, Adv. Mater. 22, 3839 (2010).
http://dx.doi.org/10.1002/adma.200903697
2.
2. M. Jørgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen, and F. C. Krebs, Adv. Mater. 24, 580 (2012).
http://dx.doi.org/10.1002/adma.201104187
3.
3. R. De Bettignies, J. Leroy, M. Firon, and C. Sentein, Synth. Met. 156, 510 (2006).
http://dx.doi.org/10.1016/j.synthmet.2005.06.016
4.
4. J. A. Hauch, P. Schilinsky, S. A. Choulis, R. Childers, M. Biele, and C. J. Brabec, Sol. Energy Mater. Sol. Cells 92, 727 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.004
5.
5. M. O. Reese, A. J. Morfa, M. S. White, N. Kopidakis, S. E. Shaheen, G. Rumbles, and D. S. Ginley, Sol. Energy Mater. Sol. Cells 92, 746 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.020
6.
6. C. H. Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupré, M. Leclerc, and M. D. McGehee, Adv. Energy Mater. 1, 491 (2011).
http://dx.doi.org/10.1002/aenm.201100138
7.
7. S. A. Gevorgyan, M. V. Madsen, H. F. Dam, M. Jørgensen, C. J. Fell, K. F. Anderson, B. C. Duck, A. Mescheloff, E. A. Katz, A. Elschner, R. Roesch, H. Hoppe, M. Hermenau, M. Riede, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 116, 187 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.04.024
8.
8. H. Cao, W. He, Y. Mao, X. Lin, K. Ishikawa, J. H. Dickerson, and W. P. Hess, J. Power Sources 264, 168 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2014.04.080
9.
9. E. Voroshazi, B. Verreet, A. Buri, R. Müller, D. Di Nuzzo, and P. Heremans, Org. Electron. 12, 736 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.01.025
10.
10. C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, and B. P. Rand, ACS Appl. Mater. Interfaces 3, 3244 (2011).
http://dx.doi.org/10.1021/am200729k
11.
11. C. H. Peters, I. T. Sachs-Quintana, W. R. Mateker, T. Heumueller, J. Rivnay, R. Noriega, Z. M. Beiley, E. T. Hoke, A. Salleo, and M. D. McGehee, Adv. Mater. 24, 663 (2012).
http://dx.doi.org/10.1002/adma.201103010
12.
12. Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, Adv. Mater. 23, 2226 (2011).
http://dx.doi.org/10.1002/adma.201100038
13.
13. E. Voroshazi, I. Cardinaletti, T. Conard, and B. P. Rand, “Light-induced degradation of polymer: Fullerene photovoltaic devices: An intrinsic or material-dependent failure mechanism?” Adv. Energy Mater. 4(18) (published online, 2014).
http://dx.doi.org/10.1002/aenm.201400848
14.
14. Q. Wei, M. Mukaida, Y. Naitoh, and T. Ishida, Adv. Mater. 25, 2831 (2013).
http://dx.doi.org/10.1002/adma.201205158
15.
15. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, Adv. Funct. Mater. 15, 290 (2005).
http://dx.doi.org/10.1002/adfm.200400073
16.
16. Irfan, H. Ding, Y. Gao, C. Small, D. Y. Kim, J. Subbiah, and F. So, Appl. Phys. Lett. 96, 243307 (2010).
http://dx.doi.org/10.1063/1.3454779
17.
17. N. Miyata, T. Suzuki, and R. Ohyama, Thin Solid Films 281–282, 218 (1996).
http://dx.doi.org/10.1016/0040-6090(96)08617-8
18.
18. C. V. Ramana, V. V. Atuchin, V. G. Kesler, V. A. Kochubey, L. D. Pokrovsky, V. Shutthanandan, U. Becker, and R. C. Ewing, Appl. Surf. Sci. 253, 5368 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.12.012
19.
19. L. Chen, P. Wang, F. Li, S. Yu, and Y. Chen, Sol. Energy Mater. Sol. Cells 102, 66 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.03.027
20.
20. F. Liu, S. Shao, X. Guo, Y. Zhao, and Z. Xie, Sol. Energy Mater. Sol. Cells 94, 842 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.01.004
21.
21. S. Murase and Y. Yang, Adv. Mater. 24, 2459 (2012).
http://dx.doi.org/10.1002/adma.201104771
22.
22. S. Cho, J. H. Seo, S. H. Park, S. Beaupré, M. Leclerc, and A. J. Heeger, Adv. Mater. 22, 1253 (2010).
http://dx.doi.org/10.1002/adma.200903420
23.
23. K. Zilberberg, S. Trost, H. Schmidt, and T. Riedl, Adv. Energy Mater. 1, 377 (2011).
http://dx.doi.org/10.1002/aenm.201100076
24.
24. I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. Mcconville, and T. S. Jones, J. Phys. Chem. C 117, 49 (2013).
http://dx.doi.org/10.1021/jp3075767
25.
25. G. Terán-Escobar, J. Pampel, J. M. Caicedo, and M. Lira-Cantú, Energy Environ. Sci. 6, 3088 (2013).
http://dx.doi.org/10.1039/c3ee42204f
26.
26. Y.-M. Chang and J.-M. Ding, Thin Solid Films 520, 5400 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.03.118
27.
27. N. Blouin, A. Michaud, and M. Leclerc, Adv. Mater. 19, 2295 (2007).
http://dx.doi.org/10.1002/adma.200602496
28.
28. M. O. Reese, A. M. Nardes, B. L. Rupert, R. E. Larsen, D. C. Olson, M. T. Lloyd, S. E. Shaheen, D. S. Ginley, G. Rumbles, and N. Kopidakis, Adv. Funct. Mater. 20, 3476 (2010).
http://dx.doi.org/10.1002/adfm.201001079
29.
29. S. Möller, C. Perlov, W. Jackson, C. Taussig, and S. R. Forrest, Nature 426, 166169 (2003).
http://dx.doi.org/10.1038/nature02070
30.
30. R. A. Nawrocki, E. M. Galiger, D. P. Ostrowski, B. A. Bailey, X. Jiang, R. M. Voyles, N. Kopidakis, D. C. Olson, and S. E. Shaheen, Org. Electron. 15, 1791 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.05.003
31.
31. M. Kuş and S. Okur, Sens. Actuators, B 143, 177 (2009).
http://dx.doi.org/10.1016/j.snb.2009.08.055
32.
32. J. Ouyang, C. Chu, F. Chen, Q. Xu, and Y. Yang, J. Macromol. Sci. Part A 41, 1497 (2004).
http://dx.doi.org/10.1081/MA-200035426
33.
33. T. P. Nguyen and S. A. de Vos, Appl. Surf. Sci. 221, 330 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00952-8
34.
34. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, Appl. Phys. Lett. 80, 2788 (2002).
http://dx.doi.org/10.1063/1.1469220
35.
35. M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000).
http://dx.doi.org/10.1063/1.1315344
36.
36. K. Zilberberg, S. Trost, J. Meyer, A. Kahn, A. Behrendt, D. Lützenkirchen-Hecht, R. Frahm, and T. Riedl, Adv. Funct. Mater. 21, 4776 (2011).
http://dx.doi.org/10.1002/adfm.201101402
37.
37. Z. Tan, W. Zhang, C. Cui, Y. Ding, D. Qian, Q. Xu, L. Li, S. Li, and Y. Li, Phys. Chem. Chem. Phys. 14, 14589 (2012).
http://dx.doi.org/10.1039/c2cp43125d
38.
38. J.-S. Huang, C.-Y. Chou, M.-Y. Liu, K.-H. Tsai, W.-H. Lin, and C.-F. Lin, Org. Electron. 10, 1060 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.017
39.
39. F. Xie, W. C. H. Choy, C. Wang, X. Li, S. Zhang, and J. Hou, Adv. Mater. 25, 2051 (2013).
http://dx.doi.org/10.1002/adma.201204425
40.
40. M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz, A. Elschner, O. Haillant, T. R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. (Jimmy) Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. M. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J.-B. Bonekamp, A. J. J. M. van Breemen, C. Girotto, E. Voroshazi, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 95, 1253 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.036
41.
41. A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Org. Electron. 9, 727 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.05.006
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/7/10.1063/1.4909530
Loading
/content/aip/journal/apl/106/7/10.1063/1.4909530
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/7/10.1063/1.4909530
2015-02-18
2016-12-11

Abstract

We have made a comparative study of the relative operational stability of bulk-heterojunction organic photovoltaic (OPV) devices utilising different hole transport layers (HTLs). OPV devices were fabricated based on a blend of the polymer PCDTBT with the fullerene PCBM, and incorporated the different HTL materials PEDOT:PSS, MoO and VO. Following 620 h of irradiation by light from a solar simulator, we find that devices using the PEDOT:PSS HTL retained the highest efficiency, having a projected lifetime of 14 500 h.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/7/1.4909530.html;jsessionid=Gy7OSWJXUvMXhSX4KMBALV0o.x-aip-live-02?itemId=/content/aip/journal/apl/106/7/10.1063/1.4909530&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/7/10.1063/1.4909530&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/7/10.1063/1.4909530'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,