Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/8/10.1063/1.4913846
1.
1. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
2.
2. G. F. Brown and J. Wu, Laser Photon. Rev. 3, 394 (2009).
http://dx.doi.org/10.1002/lpor.200810039
3.
3. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
4.
4. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, Nano. Lett. 10, 1501 (2010).
http://dx.doi.org/10.1021/nl100615e
5.
5. H. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
6.
6. A. Polman and H. Atwater, Nat. Mater. 11, 174 (2012).
http://dx.doi.org/10.1038/nmat3263
7.
7. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, Appl. Phys. Lett. 92, 013504 (2008).
http://dx.doi.org/10.1063/1.2823578
8.
8. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, Opt. Express 18, A237 (2010).
http://dx.doi.org/10.1364/OE.18.00A237
9.
9. S. Y. Chou and W. Ding, Opt. Express 21, A60 (2013).
http://dx.doi.org/10.1364/OE.21.000A60
10.
10. S. Hayashi, K. Kozaru, and K. Yamamoto, Solid State Commun. 79, 763 (1991).
http://dx.doi.org/10.1016/0038-1098(91)90792-T
11.
11. T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto, Jpn. J. Appl. Phys., Part 1 34, 6448 (1995).
http://dx.doi.org/10.1143/JJAP.34.6448
12.
12. A. C. Dürr, F. Schreiber, M. Münch, N. Karl, B. Krause, V. Kruppa, and H. Dosch, Appl. Phys. Lett. 81, 2276 (2002).
http://dx.doi.org/10.1063/1.1508436
13.
13. A. C. Dürr, F. Schreiber, K. A. Ritley, V. Kruppa, J. Krug, H. Dosch, and B. Struth, Phys. Rev. Lett. 90, 016104 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.016104
14.
14. D. Yokoyama, Z. Q. Wang, Y.-J. Pu, K. Kobayashi, J. Kido, and Z. Hong, Sol. Energy Mater. Sol. Cells 98, 472 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.10.014
15.
15. Y.-Q. Zheng, Z. W. J. Potscavage, T. Komino, M. Hirade, J. Adachi, and C. Adachi, Appl. Phys. Lett. 102, 143304 (2013).
http://dx.doi.org/10.1063/1.4801647
16.
16. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, Science 336, 327 (2012).
http://dx.doi.org/10.1126/science.1218829
17.
17. J. Wagner, M. Gruber, A. Hinderhofer, A. Wilke, B. Bröker, J. Frisch, P. Amsalem, A. Vollmer, A. Opitz, N. Koch, F. Schreiber, and W. Brütting, Adv. Funct. Mater. 20, 4295 (2010).
http://dx.doi.org/10.1002/adfm.201001028
18.
18. S. Grob, M. Gruber, A. N. Bartynski, U. Hörmann, T. Linderl, M. E. Thompson, and W. Brütting, Appl. Phys. Lett. 104, 213304 (2014).
http://dx.doi.org/10.1063/1.4879839
19.
19. C.-W. Chu, V. Shrotriya, G. Li, and Y. Yang, Appl. Phys. Lett. 88, 153504 (2006).
http://dx.doi.org/10.1063/1.2194207
20.
20. E. Kretschmann, Opt. Commun. 6, 185 (1972).
http://dx.doi.org/10.1016/0030-4018(72)90224-6
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4913846 for details on simulation and n- and k-values of the used materials.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/8/10.1063/1.4913846
Loading
/content/aip/journal/apl/106/8/10.1063/1.4913846
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/8/10.1063/1.4913846
2015-02-25
2016-12-03

Abstract

We investigate the coupling between surface plasmons and excitons for different donor materials in semitransparent organic solar cells. Surface plasmons can be excited at the interface between the semitransparent anode and the surrounding dielectric medium in Kretschmann configuration, if the resonance condition for wavelength and angle is fulfilled. In solar cells with nearly upright standing diindenoperylene donor molecules in close proximity to the metal, this can lead to an enhancement in photo-current. By contrast, for cells with dibenzo-tetraphenyl-periflanthen as donor, the lying orientation of molecules is unfavorable for coupling to surface plasmons. In this case, the excitation of surface plasmons acts like a parasitic absorption and reduces the photo-current.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/8/1.4913846.html;jsessionid=129L63_ZFBp3x1VN_lxbd_FA.x-aip-live-06?itemId=/content/aip/journal/apl/106/8/10.1063/1.4913846&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/8/10.1063/1.4913846&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/8/10.1063/1.4913846'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,