Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/106/9/10.1063/1.4913912
1.
1.Smart Light-Responsive Materials, edited by Y. Zhao and T. Ikeda ( Wiley, New Jersey, 2000).
2.
2. E. Ercole, T. P. Davis, and R. A. Evans, Polym. Chem. 1, 37 (2010).
http://dx.doi.org/10.1039/b9py00300b
3.
3. I. Tomiki and T. Ube, Mater. Today 14(10), 480 (2011).
http://dx.doi.org/10.1016/S1369-7021(11)70212-7
4.
4. T. Stanislav, J. Zhou, C. Spillmann, J. Naciri, T. Ikeda, and B. Ratna, Macromol. Chem. Phys. 214(6), 734 (2013).
http://dx.doi.org/10.1002/macp.201200581
5.
5. Z. Sun, G. Qin, X. Xia, M. Cronin-Golomb, F. G. Omenetto, and D. L. Kaplan, J. Am. Chem. Soc. 135(9), 3675 (2013).
http://dx.doi.org/10.1021/ja312647n
6.
6. A. R. Murphy and D. L. Kaplan, J. Mater. Chem. 19, 6443 (2009).
http://dx.doi.org/10.1039/b905802h
7.
7. K. Tsioris, G. E. Tilburey, A. R. Murphy, P. Domachuk, D. L. Kaplan, and F. G. Omenetto, Adv. Funct. Mater. 20(7), 1083 (2010).
http://dx.doi.org/10.1002/adfm.200902050
8.
8. M. Cronin-Golomb, A. R. Murphy, J. P. Mondia, D. L. Kaplan, and F. G. Omenetto, J. Polym. Sci., Part B: Polym. Lett. 50(4), 257 (2012).
http://dx.doi.org/10.1002/polb.23003
9.
9. Z. Shao and F. Vollrath, Nature 418, 741 (2002).
http://dx.doi.org/10.1038/418741a
10.
10. I. Krasnov, I. Diddens, N. Hauptmann, G. Helms, M. Ogurreck, T. Seydel, S. S. Funari, and M. Müller, Phys. Rev. Lett. 100, 048104 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.048104
11.
11. J. Warwicker, Acta Crystallogr. 7, 565 (1954).
http://dx.doi.org/10.1107/S0365110X54001867
12.
12. H. Akiyama, K. Tamada, J. Nagasawa, K. Abe, and T. Tamaki, J. Phys. Chem. B 107(1), 130 (2003).
http://dx.doi.org/10.1021/jp026103g
13.
13. K. Tamada, H. Akiyama, and T. X. Wei, Langmuir 18(13), 5239 (2002).
http://dx.doi.org/10.1021/la0157667
14.
14. U. Jung, O. Filinova, S. Kuhn, D. Zargarani, C. Bornholdt, R. Herges, and O. Magnussen, Langmuir 26(17), 13913 (2010).
http://dx.doi.org/10.1021/la1015109
15.
15. Y. Ivarsson, C. Travaglini-Allocatelli, M. Brunori, and S. Gianni, “ Mechanisms of protein folding,” Eur. Biophys. J. 37, 721 (2008).
http://dx.doi.org/10.1007/s00249-007-0256-x
16.
16. C. J. Krywka, S. Keckes, S. Storm, A. Buffet, S. V. Roth, R. Döhrmann, and M. Müller, J. Phys.: Conf. Ser. 425, 072021 (2013).
http://dx.doi.org/10.1088/1742-6596/425/7/072021
http://aip.metastore.ingenta.com/content/aip/journal/apl/106/9/10.1063/1.4913912
Loading
/content/aip/journal/apl/106/9/10.1063/1.4913912
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/106/9/10.1063/1.4913912
2015-03-02
2016-10-01

Abstract

An optically active bio-material is created by blending natural silk fibers with photoisomerizable chromophore molecules—azobenzenebromide (AzBr). The material converts the energy of unpolarized light directly into mechanical work with a well-defined direction of action. The feasibility of the idea to produce optically driven microsized actuators on the basis of bio-material (silk) is proven. The switching behavior of the embedded AzBr molecules was studied in terms of UV/Vis spectroscopy. To test the opto-mechanical properties of the modified fibers and the structural changes they undergo upon optically induced switching, single fiber X-ray diffraction with a micron-sized synchrotron radiation beam was combined with optical switching as well as with mechanical testing and monitoring. The crystalline regions of silk are not modified by the presence of the guest molecules, hence occupy only the amorphous part of the fibers. It is shown that chromophore molecules embedded into fibers can be reversibly switched between the and conformation by illumination with light of defined wavelengths. The host fibers respond to this switching with a variation of the internal stress. The amplitude of the mechanical response is independent of the applied external stress and its characteristic time is shorter than the relaxation time of the usual mechanical response of silk.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/106/9/1.4913912.html;jsessionid=Fk39RYD9cRorqd_MDgdlEoPc.x-aip-live-03?itemId=/content/aip/journal/apl/106/9/10.1063/1.4913912&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/106/9/10.1063/1.4913912&pageURL=http://scitation.aip.org/content/aip/journal/apl/106/9/10.1063/1.4913912'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,