Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. B. Darling and F. You, RSC Adv. 3(39), 1763317648 (2013).
2. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, Nat. Commun. 5, 5293 (2014);
2. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
3. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, Nat. Nanotechnol. 9(11), 927932 (2014), see
4. M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci. U.S.A. 105(8), 27832787 (2008);
4. A. Hadipour, D. Cheyns, P. Heremans, and B. P. Rand, Adv. Energy Mater. 1(5), 930935 (2011);
4. G. F. Burkhard, E. T. Hoke, and M. D. McGehee, Adv. Mater. 22(30), 32933297 (2010).
5. N. D. Treat, L. M. Campos, M. D. Dimitriou, B. W. Ma, M. L. Chabinyc, and C. J. Hawker, Adv. Mater. 22(44), 49824986 (2010).
6. N. Yaacobi-Gross, N. D. Treat, P. Pattanasattayavong, H. Faber, A. K. Perumal, N. Stingelin, D. D. C. Bradley, P. N. Stavrinou, M. Heeney, and T. D. Anthopoulos, Adv. Energy Mater. 5, 1401529 (2015).
7. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, Adv. Funct. Mater. 15(2), 290296 (2005);
7. A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Org. Electron. 9(5), 727734 (2008);
7. S. G. Im, K. K. Gleason, and E. A. Olivetti, Appl. Phys. Lett. 90(15), 152112 (2007).
8. N. Koch, A. Vollmer, and A. Elschner, Appl. Phys. Lett. 90(4), 043512 (2007).
9. Y. Kim, A. M. Ballantyne, J. Nelson, and D. D. C. Bradley, Org. Electron. 10(1), 205209 (2009).
10. D. Poplavskyy, J. Nelson, and D. D. C. Bradley, Appl. Phys. Lett. 83(4), 707709 (2003).
11. X. Wang, T. Ishwara, W. Gong, M. Campoy-Quiles, J. Nelson, and D. D. C. Bradley, Adv. Funct. Mater. 22(7), 14541460 (2012).
12. S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata, and T. S. Jones, Adv. Funct. Mater. 14(12), 12051210 (2004).
13. P. Pattanasattayavong, G. O. N. Ndjawa, K. Zhao, K. W. Chou, N. Yaacobi-Gross, B. C. O'Regan, A. Amassian, and T. D. Anthopoulos, Chem. Commun. 49(39), 41544156 (2013);
13. P. Pattanasattayavong, N. Yaacobi-Gross, K. Zhao, G. O. N. Ndjawa, J. Li, F. Yan, B. C. O'Regan, A. Amassian, and T. D. Anthopoulos, Adv. Mater. 25(10), 15041509 (2013).
14. A. Perumal, H. Faber, N. Yaacobi-Gross, P. Pattanasattayavong, C. Burgess, S. Jha, M. A. McLachlan, P. N. Stavrinou, T. D. Anthopoulos, and D. D. C. Bradley, Adv. Mater. 27(1), 93100 (2015).
15. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Grätzel, Nat. Commun. 5, 3834 (2014).
16. C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, and J. M. J. Frechet, J. Am. Chem. Soc. 132(22), 75957597 (2010);
16. Y. Zou, A. Najari, P. Berrouard, S. Beaupré, B. Réda Aïch, Y. Tao, and M. Leclerc, J. Am. Chem. Soc. 132(15), 53305331 (2010).
17. E. T. Hoke, K. Vandewal, J. A. Bartelt, W. R. Mateker, J. D. Douglas, R. Noriega, K. R. Graham, J. M. J. Fréchet, A. Salleo, and M. D. McGehee, Adv. Energy Mater. 3(2), 220230 (2013);
17. W. R. Mateker, J. D. Douglas, C. Cabanetos, I. T. Sachs-Quintana, J. A. Bartelt, E. T. Hoke, A. El Labban, P. M. Beaujuge, J. M. J. Frechet, and M. D. McGehee, Energy Environ. Sci. 6(8), 25292537 (2013).
18. R. H. Fowler, Phys. Rev. 38(1), 4556 (1931).
19.See supplementary material at for further experimental data obtained and relevant analysis.[Supplementary Material]
20. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 89(10), 55645569 (2001).
21. I. G. Hill and A. Kahn, J. Appl. Phys. 86(8), 45154519 (1999).
22. B. J. Tremolet de Villers, R. C. I. MacKenzie, J. J. Jasieniak, N. D. Treat, and M. L. Chabinyc, Adv. Energy Mater. 4, 1301290 (2014);
22. S. R. Dupont, E. Voroshazi, D. Nordlund, K. Vandewal, and R. H. Dauskardt, Adv. Mater. Interfaces 1, 1400135 (2014).
23. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals ( Clarendon Press, Oxford, 1940).

Data & Media loading...


Article metrics loading...



We report the advantageous properties of the inorganic molecular semiconductor copper(I) thiocyanate (CuSCN) for use as a hole collection/transport layer (HTL) in organic photovoltaic (OPV) cells. CuSCN possesses desirable HTL energy levels [i.e., valence band at −5.35 eV, 0.35 eV deeper than poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)], which produces a 17% increase in power conversion efficiency (PCE) relative to PEDOT:PSS-based devices. In addition, a two-fold increase in shunt resistance for the solar cells measured in dark conditions is achieved. Ultimately, CuSCN enables polymer:fullerene based OPV cells to achieve PCE > 8%. CuSCN continues to offer promise as a chemically stable and straightforward replacement for the commonly used PEDOT:PSS.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd