Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. N. Hatsopoulos and E. P. Gyftopoulos, Thermionic Energy Conversion Vol. 1: Processes and Devices ( MIT Press, Cambridge, MA, USA, 1973).
2. J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, Nat. Mater. 9, 762 (2010).
3. G. Segev, Y. Rosenwaks, and A. Kribus, Sol. Energy Mater. Sol. Cells 107, 125 (2012).
4. G. Segev, Y. Rosenwaks, and A. Kribus, AIP Conf. Proc. 53, 53 (2013).
5. G. Segev, Y. Rosenwaks, and A. Kribus, Sol. Energy Mater. Sol. Cells 140, 464 (2015).
6. J. R. Smith, G. L. Bilbro, and R. J. Nemanich, J. Vac. Sci. Technol., B 27, 1132 (2009).
7. J.-H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, Appl. Phys. Lett. 100, 173904 (2012).
8. T. Ito and M. A. Cappelli, Appl. Phys. Lett. 101, 213901 (2012).
9. F. A. M. Koeck, R. J. Nemanich, Y. Balasubramaniam, K. Haenen, and J. Sharp, Diamond Relat. Mater. 20, 1229 (2011).
10. S. Meir, C. Stephanos, T. H. Geballe, and J. Mannhart, J. Renewable Sustainable Energy 5, 043127 (2013).
11. J. R. Smith, G. L. Bilbro, and R. J. Nemanich, Diamond Relat. Mater. 15, 2082 (2006).
12. S. Su, Y. Wang, T. Liu, G. Su, and J. Chen, Sol. Energy Mater. Sol. Cells 121, 137 (2014).
13.See supplementary material at for further details on the analysis, numerical procedure, and the effective recombination velocity effects.[Supplementary Material]
14. S. M. Sze, Physics of Semiconductor Devices ( Wiley, 2007).
15. F. A. M. Koeck, R. J. Nemanich, A. Lazea, and K. Haenen, Diamond Relat. Mater. 18, 789 (2009).
16. G. Segev, Y. Rosenwaks, and A. Kribus, J. Appl. Phys. 114, 044505 (2013).
17. R. Sandovsky, G. Segev, Y. Rosenwaks, and A. Kribus, in 29th European Photovoltaic Solar Energy Conference and Exhibition ( Amsterdam, 2014), pp. 4345.
18. A. Varpula and M. Prunnila, J. Appl. Phys. 112, 044506 (2012).
19. K. Sahasrabuddhe, J. W. Schwede, I. Bargatin, J. Jean, R. T. Howe, Z.-X. Shen, and N. A. Melosh, J. Appl. Phys. 112, 094907 (2012).
20. J. W. Schwede, T. Sarmiento, V. K. Narasimhan, S. J. Rosenthal, D. C. Riley, F. Schmitt, I. Bargatin, K. Sahasrabuddhe, R. T. Howe, J. S. Harris, N. A. Melosh, and Z.-X. Shen, Nat. Commun. 4, 1576 (2013).

Data & Media loading...


Article metrics loading...



In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 m the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 m the maximum efficiency is 31% and optimal flux concentration is 163.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd