Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/10/10.1063/1.4929728
1.
1. F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Jr., Nature 176, 51 (1955).
http://dx.doi.org/10.1038/176051a0
2.
2. T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya, Nature 421, 599 (2003).
http://dx.doi.org/10.1038/421599b
3.
3. P. F. McMillan, Nat. Mater. 1, 19 (2002).
http://dx.doi.org/10.1038/nmat716
4.
4. R. B. Kaner, J. J. Gilman, and S. H. Tolbert, Science 308, 1268 (2005).
http://dx.doi.org/10.1126/science.1109830
5.
5. R. H. Wentorf, Jr., J. Chem. Phys. 26, 956 (1957).
http://dx.doi.org/10.1063/1.1745964
6.
6. Y. J. Tian, B. Xu, D. Yu, Y. Ma, Y. Wang, Y. Jiang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L. Wang, B. Wen, J. He, and Z. Liu, Nature 493, 385 (2013).
http://dx.doi.org/10.1038/nature11728
7.
7. N. Dubrovinskaia, V. L. Solozhenko, N. Miyajima, V. Dmitriev, O. Kurakevych, and L. Dubrovinsky, Appl. Phys. Lett. 90, 101912 (2007).
http://dx.doi.org/10.1063/1.2711277
8.
8. D. He, Y. Zhao, L. Daemen, J. Qian, T. D. Shen, and T. W. Zerda, Appl. Phys. Lett. 81, 643 (2002).
http://dx.doi.org/10.1063/1.1494860
9.
9. Y. Zhao, D. W. He, L. L. Daemen, T. D. Shen, R. B. Schwarz, Y. Zhu, D. L. Bish, J. Huang, J. Zhang, G. Shen, J. Qian, and T. W. Zerda, J. Mater. Res. 17, 3139 (2002).
http://dx.doi.org/10.1557/JMR.2002.0454
10.
10. R. H. Wentorf, R. C. DeVries, and F. P. Bundy, Science 208, 873 (1980).
http://dx.doi.org/10.1126/science.208.4446.873
11.
11. S. Veprek, J. Vac. Sci. Technol. A 17, 2401 (1999).
http://dx.doi.org/10.1116/1.581977
12.
12. S. Veprek, in Handbook of Ceramic Hard Materials, edited by R. Riedel ( Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000), pp. 104139.
13.
13. A. R. Badzian, Mater. Res. Bull. 16, 1385 (1981).
http://dx.doi.org/10.1016/0025-5408(81)90057-X
14.
14. T. Sasaki, M. Akaishi, S. Yamaoka, Y. Fujiki, and T. Oikawa, Chem. Mater. 5, 695 (1993).
http://dx.doi.org/10.1021/cm00029a020
15.
15. S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Chem. Mater. 6, 2246 (1994).
http://dx.doi.org/10.1021/cm00048a011
16.
16. E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen, Phys. Rev. B 51, 12149 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.12149
17.
17. T. Komatsu, M. Nomura, Y. Kakudate, and S. Fujiwara, J. Mater. Chem. 6, 1799 (1996).
http://dx.doi.org/10.1039/jm9960601799
18.
18. V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D. C. Rubie, Appl. Phys. Lett. 78, 1385 (2001).
http://dx.doi.org/10.1063/1.1337623
19.
19. V. L. Solozhenko, S. N. Dub, and N. V. Novikov, Diamond Relat. Mater. 10, 2228 (2001).
http://dx.doi.org/10.1016/S0925-9635(01)00513-1
20.
20. Y. Tateyama, T. Ogitsu, K. Kusakabe, S. Tsuneyuki, and S. Itoh, Phys. Rev. B 55, R10161 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R10161
21.
21. D. Li, D. Yu, B. Xu, J. He, Z. Liu, P. Wang, and Y. Tian, Cryst. Growth Des. 8, 2096 (2008).
http://dx.doi.org/10.1021/cg701206a
22.
22. M. J. Tang, D. He, W. Wang, H. Wang, C. Xu, F. Li, and J. Guan, Scr. Mater. 66, 781 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.02.006
23.
23. A. Y. Liu and M. L. Cohen, Science 245, 841 (1989).
http://dx.doi.org/10.1126/science.245.4920.841
24.
24. A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, S. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, Diamond Relat. Mater. 10, 1952 (2001).
http://dx.doi.org/10.1016/S0925-9635(01)00385-5
25.
25. H. Sun, S. H. Jhi, D. Roundy, M. L. Cohen, and S. G. Louie, Phys. Rev. B 64, 094108 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.094108
26.
26. S. Chen, X. G. Gong, and S. H. Wei, Phys. Rev. Lett. 98, 015502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.015502
27.
27. J. C. Zheng, H. Q. Wang, A. T. S. Wee, and C. H. A. Huan, Phys. Rev. B 66, 092104 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.092104
28.
28. Z. Pan, H. Sun, and C. Chen, Phys. Rev. Lett. 98, 135505 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.135505
29.
29. Y. Zhang, H. Sun, and C. Chen, Phys. Rev. Lett. 93, 195504 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.195504
30.
30. Y. Zhao, J. Qian, L. L. Daemen, C. Pantea, J. Zhang, G. A. Voronin, and T. W. Zerda, Appl. Phys. Lett. 84, 1356 (2004).
http://dx.doi.org/10.1063/1.1650556
31.
31. W. Wang, D. He, M. Tang, F. Li, L. Liu, and Y. Bi, Diamond Relat. Mater. 27, 49 (2012).
http://dx.doi.org/10.1016/j.diamond.2012.05.013
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4929728 for experimental details and the photographs of samples, worn flank surfaces, and XPS spectra of diamond-cBN alloy.[Supplementary Material]
33.
33. V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, Phys. Rev. Lett. 102, 015506 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.015506
34.
34. X. Liu, X. Jia, Z. Zhang, M. Zhao, W. Guo, G. Huang, and H. A. Ma, Cryst. Growth Des. 11, 1006 (2011).
http://dx.doi.org/10.1021/cg100945n
35.
35. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K , Storr, L. Balicas, F. Liu, and P. M. Ajayan, Nat. Mater. 9, 430 (2010).
http://dx.doi.org/10.1038/nmat2711
36.
36. M. O. Watanabe, S. Itoh, K. Mizushima, and T. Sasaki, Appl. Phys. Lett. 68, 2962 (1996).
http://dx.doi.org/10.1063/1.116369
37.
37. S. Veprek and M. G. J. Veprek-Heijman, Surf. Coat. Technol. 202, 5063 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2008.05.038
38.
38. Y. K. Chou, C. J. Evans, and M. M. Barash, J. Mater. Process. Technol. 124, 274 (2002).
http://dx.doi.org/10.1016/S0924-0136(02)00180-2
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/10/10.1063/1.4929728
Loading
/content/aip/journal/apl/107/10/10.1063/1.4929728
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/10/10.1063/1.4929728
2015-09-08
2016-08-26

Abstract

Diamond and cubic boron nitride ( BN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while BN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and BN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesis and characterization of transparent bulk diamond- BN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- BN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal BN. High-speed cutting tests on hardened steel and granite suggest that diamond- BN alloy is indeed a universal cutting material.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/10/1.4929728.html;jsessionid=Tqhb-ieSbzVC_zG41usZNNTd.x-aip-live-06?itemId=/content/aip/journal/apl/107/10/10.1063/1.4929728&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/10/10.1063/1.4929728&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/10/10.1063/1.4929728'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,