Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Yan, D. Gargas, and P. Yang, Nat. Photonics 3, 569 (2009).
2. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, Nat. Photonics 7, 306 (2013).
3. J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, Nat. Nanotechnol. 5, 225 (2010).
4. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).
5. N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, Adv. Mater. 26, 2137 (2014).
6. F. Glas, “ Stress relaxation in nanowires with heterostructures,” in Wide Band Gap Semiconductor Nanowires 1 ( John Wiley and Sons, Inc., 2014), pp. 2557.
7. M. Montazeri, M. Fickenscher, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, J. H. Kang, Q. Gao, H. H. Tan, C. Jagadish, Y. Guo, J. Zou, M.-E. Pistol, and C. E. Pryor, Nano Lett. 10, 880 (2010).
8. J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M.-C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, Nano Lett. 13, 6070 (2013).
9. P. Lu, C. Sun, H. Cao, H. Ye, X. Zhong, Z. Yu, L. Han, and S. Wang, Solid State Commun. 178, 1 (2014).
10. J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, Nano Lett. 13, 4317 (2013).
11. K. J. Kuhn, Microelectron. Eng. 88, 1044 (2011).
12. J.-P. Raskin, J.-P. Colinge, I. Ferain, A. Kranti, C.-W. Lee, N. D. Akhavan, R. Yan, P. Razavi, and R. Yu, Appl. Phys. Lett. 97, 042114 (2010).
13. S. Conesa-Boj, F. Boioli, E. Russo-Averchi, S. Dunand, M. Heiss, D. Rüffer, N. Wyrsch, C. Ballif, L. Miglio, and A. F. i. Morral, Nano Lett. 14, 1859 (2014).
14. M. W. Larsson, J. B. Wagner, M. Wallin, P. Håkansson, L. E. Fröberg, L. Samuelson, and L. R. Wallenberg, Nanotechnology 18, 015504 (2007).
15. J. Chen, G. Conache, M.-E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, Nano Lett. 10, 1280 (2010).
16. A. Biermanns, T. Rieger, G. Bussone, U. Pietsch, D. Grutzmacher, and M. Ion Lepsa, Appl. Phys. Lett. 102, 043109 (2013).
17. M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, Nat. Mater. 9, 120 (2010).
18. M. V. Holt, S. O. Hruszkewycz, C. E. Murray, J. R. Holt, D. M. Paskiewicz, and P. H. Fuoss, Phys. Rev. Lett. 112, 165502 (2014).
19. J. Gulden, S. Mariager, A. Mancuso, O. Yefanov, J. Baltser, P. Krogstrup, J. Patommel, M. Burghammer, R. Feidenhans'l, and I. Vartanyants, Phys. Status Solidi A 208, 2495 (2011).
20. A. Schropp, P. Boye, J. Feldkamp, R. Hoppe, J. Patommel, D. Samberg, S. Stephan, K. Giewekemeyer, R. Wilke, T. Salditt et al., Appl. Phys. Lett. 96, 091102 (2010).
21. F. Döring, A. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, and H. Krebs, Opt. Express 21, 19311 (2013).
22. R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty et al., J. Synchrotron Radiat. 19, 1056 (2012).
23. C. Mocuta, J. Stangl, K. Mundboth, and T. Metzger, Phys. Rev. B 77, 245425 (2008).
24. C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommel, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, Nucl. Instrum. Methods Phys. Res., Sect. A 616, 93 (2010).
25. D. Dzhigaev, T. Stankevic, I. Besedin, S. Lazarev, A. Shabalin, M. N. Strikhanov, R. Feidenhans'l, and I. A. Vartanyants, “ Theoretical analysis of the strain mapping in a single core-shell nanowire by x-ray Bragg ptychography,” SPIE X-Ray Nanoimaging: Instruments and Methods (unpublished) (2015).
26.See supplementary material at for the additional results and calculation details.[Supplementary Material]
27. T. Stankevič, S. Mickevičius, M. Schou Nielsen, O. Kryliouk, R. Ciechonski, G. Vescovi, Z. Bi, A. Mikkelsen, L. Samuelson, C. Gundlach et al., J. Appl. Crystallogr. 48, 344 (2015).
28. D. Holec, P. Costa, M. Kappers, and C. Humphreys, J. Cryst. Growth 303, 314 (2007).
29. M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, J. Cryst. Growth 310, 4913 (2008).
30. J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, Nano Lett. 14, 1300 (2014).

Data & Media loading...


Article metrics loading...



Strained InGaN/GaN core-shell nanowires (NWs) are promising candidates for solid state lighting applications due to their superior properties compared to planar films. NW based devices consist of multiple functional layers, which sum up to many hundred nanometers in thickness, that can uniquely be accessed in a non-destructive fashion by hard X-rays. Here, we present a detailed nanoscale strain mapping performed on a single, 400 nm thick and 2 m long core-shell InGaN/GaN nanowire with an x-ray beam focused down to 100 nm. We observe an inhomogeneous strain distribution caused by the asymmetric strain relaxation in the shell. One side of the InGaN shell was fully strained, whereas the other side and the top part were relaxed. Additionally, tilt and strain gradients were determined at the interface with the substrate.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd