Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/10/10.1063/1.4929942
1.
1. R. Yan, D. Gargas, and P. Yang, Nat. Photonics 3, 569 (2009).
http://dx.doi.org/10.1038/nphoton.2009.184
2.
2. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, Nat. Photonics 7, 306 (2013).
http://dx.doi.org/10.1038/nphoton.2013.32
3.
3. J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, Nat. Nanotechnol. 5, 225 (2010).
http://dx.doi.org/10.1038/nnano.2010.15
4.
4. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71650-9
5.
5. N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, Adv. Mater. 26, 2137 (2014).
http://dx.doi.org/10.1002/adma.201305929
6.
6. F. Glas, “ Stress relaxation in nanowires with heterostructures,” in Wide Band Gap Semiconductor Nanowires 1 ( John Wiley and Sons, Inc., 2014), pp. 2557.
7.
7. M. Montazeri, M. Fickenscher, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, J. H. Kang, Q. Gao, H. H. Tan, C. Jagadish, Y. Guo, J. Zou, M.-E. Pistol, and C. E. Pryor, Nano Lett. 10, 880 (2010).
http://dx.doi.org/10.1021/nl903547r
8.
8. J. Treu, M. Bormann, H. Schmeiduch, M. Döblinger, S. Morkötter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M.-C. Amann, J. J. Finley, G. Abstreiter, and G. Koblmüller, Nano Lett. 13, 6070 (2013).
http://dx.doi.org/10.1021/nl403341x
9.
9. P. Lu, C. Sun, H. Cao, H. Ye, X. Zhong, Z. Yu, L. Han, and S. Wang, Solid State Commun. 178, 1 (2014).
http://dx.doi.org/10.1016/j.ssc.2013.10.011
10.
10. J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, Nano Lett. 13, 4317 (2013).
http://dx.doi.org/10.1021/nl4021045
11.
11. K. J. Kuhn, Microelectron. Eng. 88, 1044 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.163
12.
12. J.-P. Raskin, J.-P. Colinge, I. Ferain, A. Kranti, C.-W. Lee, N. D. Akhavan, R. Yan, P. Razavi, and R. Yu, Appl. Phys. Lett. 97, 042114 (2010).
http://dx.doi.org/10.1063/1.3474608
13.
13. S. Conesa-Boj, F. Boioli, E. Russo-Averchi, S. Dunand, M. Heiss, D. Rüffer, N. Wyrsch, C. Ballif, L. Miglio, and A. F. i. Morral, Nano Lett. 14, 1859 (2014).
http://dx.doi.org/10.1021/nl4046312
14.
14. M. W. Larsson, J. B. Wagner, M. Wallin, P. Håkansson, L. E. Fröberg, L. Samuelson, and L. R. Wallenberg, Nanotechnology 18, 015504 (2007).
http://dx.doi.org/10.1088/0957-4484/18/1/015504
15.
15. J. Chen, G. Conache, M.-E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, Nano Lett. 10, 1280 (2010).
http://dx.doi.org/10.1021/nl904040y
16.
16. A. Biermanns, T. Rieger, G. Bussone, U. Pietsch, D. Grutzmacher, and M. Ion Lepsa, Appl. Phys. Lett. 102, 043109 (2013).
http://dx.doi.org/10.1063/1.4790185
17.
17. M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, Nat. Mater. 9, 120 (2010).
http://dx.doi.org/10.1038/nmat2607
18.
18. M. V. Holt, S. O. Hruszkewycz, C. E. Murray, J. R. Holt, D. M. Paskiewicz, and P. H. Fuoss, Phys. Rev. Lett. 112, 165502 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.165502
19.
19. J. Gulden, S. Mariager, A. Mancuso, O. Yefanov, J. Baltser, P. Krogstrup, J. Patommel, M. Burghammer, R. Feidenhans'l, and I. Vartanyants, Phys. Status Solidi A 208, 2495 (2011).
http://dx.doi.org/10.1002/pssa.201184261
20.
20. A. Schropp, P. Boye, J. Feldkamp, R. Hoppe, J. Patommel, D. Samberg, S. Stephan, K. Giewekemeyer, R. Wilke, T. Salditt et al., Appl. Phys. Lett. 96, 091102 (2010).
http://dx.doi.org/10.1063/1.3332591
21.
21. F. Döring, A. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, and H. Krebs, Opt. Express 21, 19311 (2013).
http://dx.doi.org/10.1364/OE.21.019311
22.
22. R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty et al., J. Synchrotron Radiat. 19, 1056 (2012).
http://dx.doi.org/10.1107/S0909049512036783
23.
23. C. Mocuta, J. Stangl, K. Mundboth, and T. Metzger, Phys. Rev. B 77, 245425 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245425
24.
24. C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommel, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, Nucl. Instrum. Methods Phys. Res., Sect. A 616, 93 (2010).
http://dx.doi.org/10.1016/j.nima.2009.10.094
25.
25. D. Dzhigaev, T. Stankevic, I. Besedin, S. Lazarev, A. Shabalin, M. N. Strikhanov, R. Feidenhans'l, and I. A. Vartanyants, “ Theoretical analysis of the strain mapping in a single core-shell nanowire by x-ray Bragg ptychography,” SPIE X-Ray Nanoimaging: Instruments and Methods (unpublished) (2015).
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.4929942 for the additional results and calculation details.[Supplementary Material]
27.
27. T. Stankevič, S. Mickevičius, M. Schou Nielsen, O. Kryliouk, R. Ciechonski, G. Vescovi, Z. Bi, A. Mikkelsen, L. Samuelson, C. Gundlach et al., J. Appl. Crystallogr. 48, 344 (2015).
http://dx.doi.org/10.1107/S1600576715000965
28.
28. D. Holec, P. Costa, M. Kappers, and C. Humphreys, J. Cryst. Growth 303, 314 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.12.054
29.
29. M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, J. Cryst. Growth 310, 4913 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.08.021
30.
30. J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, Nano Lett. 14, 1300 (2014).
http://dx.doi.org/10.1021/nl4042752
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/10/10.1063/1.4929942
Loading
/content/aip/journal/apl/107/10/10.1063/1.4929942
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/10/10.1063/1.4929942
2015-09-08
2016-12-03

Abstract

Strained InGaN/GaN core-shell nanowires (NWs) are promising candidates for solid state lighting applications due to their superior properties compared to planar films. NW based devices consist of multiple functional layers, which sum up to many hundred nanometers in thickness, that can uniquely be accessed in a non-destructive fashion by hard X-rays. Here, we present a detailed nanoscale strain mapping performed on a single, 400 nm thick and 2 m long core-shell InGaN/GaN nanowire with an x-ray beam focused down to 100 nm. We observe an inhomogeneous strain distribution caused by the asymmetric strain relaxation in the shell. One side of the InGaN shell was fully strained, whereas the other side and the top part were relaxed. Additionally, tilt and strain gradients were determined at the interface with the substrate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/10/1.4929942.html;jsessionid=DXMXklIS6drS4xBCDrXigx8y.x-aip-live-03?itemId=/content/aip/journal/apl/107/10/10.1063/1.4929942&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/10/10.1063/1.4929942&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/10/10.1063/1.4929942'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,