Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lovenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, J. Appl. Phys. 100, 114513 (2006).
2. M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, Org. Electron. 14, 2387 (2013).
3. M. Guerin, A. Daami, S. Jacob, E. Bergeret, E. Benevent, P. Pannier, and R. Coppard, IEEE Trans. Electron Devices 58, 3587 (2011).
4. J. Noh, D. Yeom, C. Lim, H. Cha, J. Han, J. Kim, Y. Park, V. Subramanian, and G. Cho, IEEE Trans. Electron. Packaging Manuf. 33, 275 (2010).
5. T. N. Ng, D. E. Schwartz, L. L. Lavery, G. L. Whiting, B. Russo, B. Krusor, J. Veres, P. Bröms, L. Herlogsson, N. Alam et al., Sci. Rep. 2, 585 (2012).
6. H. Zhang, M. D. Poliks, and B. Sammakia, J. Disp. Technol. 6, 571 (2010).
7. M. Janka, S. Tuukkanen, T. Joutsenoja, and D. Lupo, Thin Solid Films 519, 6587 (2011).
8. M. Janka, E. Saukko, P. Raumonen, and D. Lupo, Org. Electron. 15, 3431 (2014).
9. M. Janka, P. Raumonen, S. Tuukkanen, and D. Lupo, in Symposium M – Large-Area Processing and Patterning for Active Optical and Electronic Devices (Mater. Res. Soc. Proc., 2014), Vol. 1628, pp. mrsf131628.
10.See supplementary material at for details about sensitivity of dielectric overhang on changes in temperature and experimental details.[Supplementary Material]
11. B. D'Andrade and S. Forrest, Adv. Mater. 16, 1585 (2004).
12. M. Barink and S. Harkema, J. Appl. Phys. 112, 054507 (2012).
13. S. Harkema, S. Mennema, M. Barink, H. Rooms, J. S. Wilson, T. van Mol, and D. Bollen, “ Large area ITO-free flexible white OLEDs with Orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009).
14. H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. J. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, Nanotechnology 24, 484014 (2013).

Data & Media loading...


Article metrics loading...



We report the self-aligned passivation of a current distribution grid for an organic light emitting diode (OLED) anode using a pulsed Joule heating method to align the passivation layer accurately on the metal grid. This method involves passing an electric current through the grid to cure a polymer dielectric. Uncured polymer is then rinsed away, leaving a patterned dielectric layer that conforms to the shape of the grid lines. To enhance the accuracy of the alignment, heat conduction into the substrate and the transparent electrode is limited by using short current pulses instead of a constant current. Excellent alignment accuracy of the dielectric layer on printed metal grid lines has been achieved, with a typical 4-m dielectric overhang. In addition to good accuracy, pulsed Joule heating significantly cuts down process time and energy consumption compared to heating with a constant current. The feasibility of using a printed current distribution grid and Joule heating was demonstrated in an OLED device.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd