Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/11/10.1063/1.4931355
1.
1. D. S. Fisher, Phys. Rev. Lett. 50, 1486 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.1486
2.
2. N. Martys, M. Cieplak, and M. O. Robbins, Phys. Rev. Lett. 66, 1058 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1058
3.
3. D. S. Fisher, in Nonlinearity in Condensed Matter edited by A. R. Bishop et al. ( Springer-Verlag, New York, 1987).
4.
4. A. A. Middleton and N. S. Wingreen, Phys. Rev. Lett. 71, 3198 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3198
5.
5. C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1220
6.
6. A. Chang, L. Pfeiffer, and K. West, Phys. Rev. Lett. 77, 2538 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2538
7.
7. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature (London) 397, 598 (1999).
http://dx.doi.org/10.1038/17569
8.
8. L. Venkataraman, Y. S. Hong, and P. Kim, Phys. Rev. Lett. 96, 076601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.076601
9.
9. V. V. Deshpande, M. Bockrath, L. I. Glazman, and A. Yacoby, Nature (London) 464, 209 (2010).
http://dx.doi.org/10.1038/nature08918
10.
10. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nature Mater. 7, 855 (2008).
http://dx.doi.org/10.1038/nmat2298
11.
11. Y. Lee, C. Clement, J. Hellerstedt, J. Kinney, L. Kinnischtzke, X. Leng, S. D. Snyder, and A. M. Goldman, Phys. Rev. Lett. 106, 136809 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.136809
12.
12. M. Lee, J. R. Williams, S. Zhang, C. D. Frisbie, and D. Goldhaber-Gordon, Phys. Rev. Lett. 107, 256601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.256601
13.
13. J. Nelson, K. V. Reich, M. Sammon, B. I. Shklovskii, and A. M. Goldman, Phys. Rev. B 92, 085424 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.085424
14.
14. M. Li, T. Graf, T. D. Schladt, X. Jiang, and S. S. P. Parkin, Phys. Rev. Lett. 109, 196803 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.196803
15.
15. K. Ueno, T. Nojima, S. Yonezawa, M. Kawasaki, Y. Iwasa, and Y. Maeno, Phys. Rev. B 89, 020508(R) (2014).
http://dx.doi.org/10.1103/PhysRevB.89.020508
16.
16. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
17.
17. M. Li, W. Han, X. Jiang, J. Jeong, M. G. Samant, and S. S. P. Parkin, Nano Lett. 13, 4675 (2013).
http://dx.doi.org/10.1021/nl402088f
18.
18. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa,M. Yoshimoto, and H. Koinuma, Science 266, 1540 (1994).
http://dx.doi.org/10.1126/science.266.5190.1540
19.
19. G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Appl. Phys. Lett. 73, 2920 (1998).
http://dx.doi.org/10.1063/1.122630
20.
20. D. W. Reagor and V. Y. Butko, Nature Mater. 4, 593 (2005).
http://dx.doi.org/10.1038/nmat1402
21.
21. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, Adv. Funct. Mater. 19, 1046 (2009).
http://dx.doi.org/10.1002/adfm.200801633
22.
22. D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 74, 3241 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3241
23.
23. M. A. Kastner, Phys. Today 46(1), 24 (1993).
http://dx.doi.org/10.1063/1.881393
24.
24. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, Science 275, 1922 (1997).
http://dx.doi.org/10.1126/science.275.5308.1922
25.
25. S. W. Stanwyck, P. Gallagher, J. R. Williams, and D. Goldhaber-Gordon, Appl. Phys. Lett. 103, 213504 (2013).
http://dx.doi.org/10.1063/1.4832555
26.
26. P. Gallagher, M. Lee, J. R. Williams, and D. Goldhaber-Gordon, Nature Phys. 10, 748 (2014).
http://dx.doi.org/10.1038/nphys3049
27.
27. A. J. Rimberg, T. R. Ho, and J. Clarke, Phys. Rev. Lett. 74, 4714 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.4714
28.
28. C. I. Duruöz, R. M. Clarke, C. M. Marcus, and J. S. Harris, Jr., Phys. Rev. Lett. 74, 3237 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3237
29.
29. R. Parthasarathy, X. M. Lin, and H. M. Jaeger, Phys. Rev. Lett. 87, 186807 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.186807
30.
30. R. Parthasarathy, X. M. Lin, K. Elteto, T. F. Rosenbaum, and H. M. Jaeger, Phys. Rev. Lett. 92, 076801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.076801
31.
31. N. E. Staley, N. Ray, M. A. Kastner, M. P. Hanson, and A. C. Gossard, Phys. Rev. B 90, 195443 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.195443
32.
32. R. C. Neville, B. Hoeneisen, and C. A. Mead, J. Appl. Phys. 43, 2124 (1972).
http://dx.doi.org/10.1063/1.1661463
33.
33. K. A. Müller and H. Burkard, Phys. Rev. B 19, 3593 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.3593
34.
34. Y. Imry, Introduction to Mesoscopic Physics, 2nd ed. ( Oxford University Press, New York 2002).
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/11/10.1063/1.4931355
Loading
/content/aip/journal/apl/107/11/10.1063/1.4931355
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/11/10.1063/1.4931355
2015-09-16
2016-12-10

Abstract

Measurements of the current-voltage () characteristics of ionic liquid gated nanometer scale channels of strontium titanate have been carried out. At low gate voltages, the characteristics exhibit a large voltage threshold for conduction and a nonlinear power law behavior at all temperatures measured. The source-drain current of these nanowires scales as a power law of the difference between the source-drain voltage and the threshold voltage. The scaling behavior of the characteristic is reminiscent of collective electronic transport through an array of quantum dots. At large gate voltages, the narrow channel acts as a quasi-1D wire whose conductance follows Landauer's formula for multichannel transport.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/11/1.4931355.html;jsessionid=IeHo5j9zjfxGtoA30wuNv2wb.x-aip-live-03?itemId=/content/aip/journal/apl/107/11/10.1063/1.4931355&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/11/10.1063/1.4931355&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/11/10.1063/1.4931355'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,