Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. K. Zhao, C. Y. Gao, and D. Liu, “ The extended Q-range small-angle neutron scattering diffractometer at the SNS,” J. Appl. Cryst. 43, 10681077 (2010).
2. M. Bleuel, K. Littrell, R. Gaehler, and J. Lal, “ MISANS, a method for quasi-elastic small angle neutron scattering experiments,” Physica B 356, 213217 (2005).
3. G. Brandl, R. Georgii, W. Häußler, S. Mühlbauer, and P. Böni, “ Large scales–longtimes: Adding high energy resolution to SANSm,” Nucl. Instrum. Methods A 654, 394398 (2011).
4. R. Golub and R. Gähler, “ A neutron resonance spin echo spectrometer for quasi-elastic and inelastic scattering,” Phys. Lett. A 123, 4348 (1987).
5. R. Gähler and R. Golub, “ A high resolution neutron spectrometer for quasielastic scattering on the basis of spin-echo and magnetic resonance,” Z. Phys. B 65, 269273 (1987).
6. M. Bleuel and A. A. van Well, “ First tests of the new TOFLAR (time of flight and Larmor precession)-method,” Physica B 406, 24782481 (2011), see
7. R. Gähler, R. Golub, and T. Keller, “ Neutron resonance spin echo—A new tool for high resolution spectroscopy,” Physica B 180–181, 899902 (1992).
8. J. Kindervater, N. Martin, W. Häußler, M. Krautloher, C. Fuchs, S. Mühlbauer, J. A. Lim, E. Blackburn, P. Böni, and C. Pfleiderer, “ Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA,” EPJ Web Conf. 83, 03008 (2015).
9. P. Hank, W. Besenböck, R. Gähler, and M. Köppe, “ Zero-field neutron spin echo techniques for incoherent scattering,” Physica B 234–236, 11301132 (1997).
10. Y. Kawabata, M. Hino, M. Kitaguchi, H. Hayashida, S. Tasaki, T. Ebisawa, D. Yamazaki, R. Maruyama, H. Seto, M. Nagao, and T. Kanaya, “ Neutron resonance spin echo and MIEZE spectrometer development project in Japan,” Physica B 385–386, 11221124 (2006).
11. M. Hino, M. Kitaguchi, H. Hayashida, Y. Kawabata, S. Tasaki, T. Ebisawa, D. Yamazaki, R. Maruyama, K. Tanaka, N. Torikai, R. Inoue, and T. Kanaya, “ A test of MIEZE-reflectometer for study of surface and interface,” Physica B 385–386, 11251127 (2006).
12. H. Hayashida, M. Kitaguchi, M. Hino, Y. Kawabata, and T. Ebisawa, “ Observation of MIEZE signal with an effective frequency of 1 MHz,” Physica B 397, 144146 (2007).
13. H. Hayashida, M. Hino, M. Kitaguchi, Y. Kawabata, and N. Achiwa, “ A study of resolution function on a MIEZE spectrometer,” Meas. Sci. Technol. 19, 034006 (2008).
14. H. Hayashida, M. Hino, M. Kitaguchi, N. Achiwa, and Y. Kawabata, “ A new MIEZE technique for investigating relaxation of magnetic nanoparticles,” Nucl. Instrum. Methods A 600, 5659 (2009).
15. F. Mezei, “ Neutron spin echo—New concept in polarized thermal neutron techniques,” Z. Phys. 255(2), 146160 (1972).
16. H. Hayashida, M. Kitaguchi, M. Hino, Y. Kawabata, R. Maruyama, and T. Ebisawa, “ Development of a resonance spin flipper for NRSE/MIEZE on a pulsed neutron beam with an oscillating frequency of 500 kHz,” Nucl. Instrum. Methods A 574, 292296 (2007).
17. T. Ebisawa, R. Maruyama, S. Tasaki, M. Hino, Y. Kawabata, D. Yamazaki, N. Torikai, and K. Soyama, “ Neutron resonance spin echo methods for pulsed source,” Nucl. Instrum. Methods A 529, 2833 (2004).
18. M. Bleuel, M. Bröll, E. Lang, K. Littrell, R. Gähler, and J. Lal, “ First tests of a MIEZE (modulated intensity by zero effort)-type instrument on a pulsed neutron source,” Physica B 371, 297301 (2006).
19. G. Brandl, J. Lal, J. Carpenter, L. Crow, L. Robertson, R. Georgii, P. Böni, and M. Bleuel, “ Tests of modulated intensity small angle scattering in time of flight mode,” Nucl. Instrum. Methods A 667, 14 (2012).
20. P.-N. Seo, L. Barrón-Palos, J. D. Bowman, T. E. Chupp, C. Crawford, M. Dabaghyan, M. Dawkins, S. J. Freedman, T. Gentile, M. T. Gericke, R. C. Gillis, G. L. Greene, F. W. Hersman, G. L. Jones, M. Kandes, S. Lamoreaux, B. Lauss, M. B. Leuschner, R. Mahurin, M. Mason, J. Mei, G. S. Mitchell, H. Nann, S. A. Page, S. I. Penttila, W. D. Ramsay, A. Salas Bacci, S. Santra, M. Sharma, T. B. Smith, W. M. Snow, W. S. Wilburn, and H. Zhu, “ High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams,” Phys. Rev. Spec. Top. - Accel. Beams 11, 084701 (2008).

Data & Media loading...


Article metrics loading...



The analysis of neutron diffraction experiments often assumes that neutrons are elastically scattered from the sample. However, there is growing evidence that a significant fraction of the detected neutrons is in fact inelastically scattered, especially from soft materials and aqueous samples. Ignoring these inelastic contributions gives rise to inaccurate experimental results. To date, there has been no simple method with broad applicability for inelastic signal separation in neutron diffraction experiments. Here, we present a simple and robust method that we believe could be suited for this purpose. We use two radio frequency resonant spin flippers integrated with a Larmor precession field to modulate the neutron intensity and to encode the inelastic scattering information into the neutron data. All three components contribute to the spin encoding. The Larmor field serves several additional purposes. Its usage facilitates neutron time-focusing, eliminates the need for stringent magnetic shielding, and allows for compact setups. The scheme is robust, simple, and flexible. We believe that, with further improvements, it has the potential of adding inelastic signal discrimination capabilities to many existing diffraction instruments in the future.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd