Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “ Silicon microring resonators,” Laser Photonics Rev. 6(1), 4773 (2012).
2. B. Jalali and S. Fathpour, “ Silicon photonics,” J. Lightwave Technol. 24(12), 46004615 (2006).
3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “ Silicon optical modulators,” Nat. Photonics 4(8), 518526 (2010).
4. R. Soref, “ The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 16781687 (2006).
5. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “ Strained silicon as a new electro-optic material,” Nature 441(7090), 199202 (2006).
6. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “ Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11(2), 148154 (2011).
7. J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. Fedeli, H. Yu, and W. Bogaerts, “ Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401413 (2013).
8. J. Luo and A. K. Y. Jen, “ Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401012 (2013).
9. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “ Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
10. R. Himmelhuber, O. D. Herrera, R. Voorakaranam, L. Li, A. M. Jones, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “ A silicon-polymer hybrid modulator—Design, simulation and proof of principle,” J. Lightwave Technol. 31(24), 40674072 (2013).
11. R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “ High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 27262734 (2014).
12. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “ 42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 1184111851 (2011).
13. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “ Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 39523961 (2011).
14. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “ Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express 19(12), 1152911538 (2011).
15. J. P. R. Lacey and F. P. Payne, “ Radiation loss from planar wave-guides with random wall imperfections,” IEE Proc.-J.: Optoelectron. 137(4), 282288 (1990).
16. F. Qiu, A. M. Spring, F. Yu, A. I. Aoki, A. Otomo, and S. Yokoyama, “ Electro-optic polymer/titanium dioxide hybrid core ring resonator modulators,” Laser Photonics Rev. 7, L84L88 (2013).
17. X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “ nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47 (2011).
18. F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “ A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).
19. R. Song, A. Yick, and W. H. Steier, “ Conductivity-dependency-free in-plane poling for Mach-Zehnder modulator with highly conductive electro-optic polymer,” Appl. Phys. Lett. 90, 191103 (2007).
20. R. Song, H. C. Song, W. H. Steier, and C. H. Cox, “ Analysis and demonstration of Mach–Zehnder polymer modulators using in-plane coplanar waveguide structure,” IEEE J. Quantum Electron. 43(8), 633640 (2007).
21. Y. Sakamaki, T. Saida, T. Hashimoto, and H. Takahashi, “ Low-loss Y-branch waveguides designed by wavefront matching method,” J. Lightwave Technol. 27(9), 11281134 (2009).
22. R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. L. Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “ Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23, 47364750 (2015).

Data & Media loading...


Article metrics loading...



Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 m. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 m spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that of the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd