Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/12/10.1063/1.4931633
1.
1. M.-S. Kim, B.-G. Kim, and J. Kim, ACS Appl. Mater. Interfaces 1, 1264 (2009).
http://dx.doi.org/10.1021/am900155y
2.
2. G. F. A. Dibb, F. C. Jamieson, A. Maurano, J. Nelson, and J. R. Durrant, J. Phys. Chem. Lett. 4, 803 (2013).
http://dx.doi.org/10.1021/jz400140p
3.
3. S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, and D. Neher, J. Am. Chem. Soc. 134, 14932 (2012).
http://dx.doi.org/10.1021/ja305039j
4.
4. M. Glatthaar, M. Riede, N. Keegan, K. Sylvester-Hvid, B. Zimmermann, M. Niggemann, A. Hinsch, and A. Gombert, Sol. Energy Mater. Sol. Cells 91, 390 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.10.020
5.
5. C. G. Shuttle, R. Hamilton, B. C. O'Regan, J. Nelson, and J. R. Durrant, Proc. Natl. Acad. Sci. U. S. A. 107, 16448 (2010).
http://dx.doi.org/10.1073/pnas.1004363107
6.
6. W. L. Leong, S. R. Cowan, and A. J. Heeger, Adv. Energy Mater. 1, 517 (2011).
http://dx.doi.org/10.1002/aenm.201100196
7.
7. T. K. Mullenbach, Y. Zou, J. Holst, and R. J. Holmes, J. Appl. Phys. 116, 124513 (2014).
http://dx.doi.org/10.1063/1.4896269
8.
8. B. C. O'Regan, S. Scully, A. C. Mayer, E. Palomares, and J. Durrant, J. Phys. Chem. B 109, 4616 (2005).
http://dx.doi.org/10.1021/jp0468049
9.
9. R. Hamilton, C. G. Shuttle, B. O'Regan, T. C. Hammant, J. Nelson, and J. R. Durrant, J. Phys. Chem. Lett. 1, 1432 (2010).
http://dx.doi.org/10.1021/jz1001506
10.
10. C. G. Shuttle, B. O'Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Phys. Rev. B 78, 113201 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.113201
11.
11. A. Pivrikas, G. Juška, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Österbacka, Phys. Rev. Lett. 94, 176806 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176806
12.
12. G. Juška, K. Arlauskas, G. Sliaužys, A. Pivrikas, A. J. Mozer, N. S. Sariciftci, M. Scharber, and R. Österbacka, Appl. Phys. Lett. 87, 222110 (2005).
http://dx.doi.org/10.1063/1.2137454
13.
13. A. J. Mozer, G. Dennler, N. S. Sariciftci, M. Westerling, A. Pivrikas, R. Österbacka, and G. Juška, Phys. Rev. B 72, 035217 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035217
14.
14. A. Baumann, J. Lorrmann, D. Rauh, C. Deibel, and V. Dyakonov, Adv. Mater. 24, 4381 (2012).
http://dx.doi.org/10.1002/adma.201200874
15.
15. Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B 110, 25210 (2006).
http://dx.doi.org/10.1021/jp064256o
16.
16. G. Garcia-Belmonte, P. P. Boix, J. Bisquert, M. Sessolo, and H. J. Bolink, Sol. Energy Mater. Sol. Cells 94, 366 (2010).
http://dx.doi.org/10.1016/j.solmat.2009.10.015
17.
17. L. Burtone, J. Fischer, K. Leo, and M. Riede, Phys. Rev. B 87, 045432 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.045432
18.
18. C. M. Proctor, C. Kim, D. Neher, and T.-Q. Nguyen, Adv. Funct. Mater. 23, 3584 (2013).
http://dx.doi.org/10.1002/adfm.201202643
19.
19. J. Nelson, Phys. Rev. B 67, 155209 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155209
20.
20. C. G. Shuttle, A. Maurano, R. Hamilton, B. C. O'Regan, J. C. de Mello, and J. R. Durrant, Appl. Phys. Lett. 93, 183501 (2008).
http://dx.doi.org/10.1063/1.3006316
21.
21. L. M. Peter, N. W. Duffy, R. L. Wang, and K. G. U. Wijayantha, J. Electroanal. Chem. 524–525, 127 (2002).
http://dx.doi.org/10.1016/S0022-0728(02)00689-7
22.
22. N. W. Duffy, L. M. Peter, R. M. G. Rajapakse, and K. G. U. Wijayantha, Electrochem. Commun. 2, 658 (2000).
http://dx.doi.org/10.1016/S1388-2481(00)00097-7
23.
23. J. Kniepert, I. Lange, N. J. van der Kaap, L. J. A. Koster, and D. Neher, Adv. Energy Mater. 4, 1301401 (2014).
http://dx.doi.org/10.1002/aenm.201301401
24.
24. R. Pandey, Y. Zou, and R. J. Holmes, Appl. Phys. Lett. 101, 033308 (2012).
http://dx.doi.org/10.1063/1.4737902
25.
25. R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, J. Appl. Phys. 105, 053711 (2009).
http://dx.doi.org/10.1063/1.3079797
26.
26. S. M. Menke, W. A. Luhman, and R. J. Holmes, Nat. Mater. 12, 152 (2013).
http://dx.doi.org/10.1038/nmat3467
27.
27. Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.-H. Liu, K.-T. Wong, J. Wen, D. J. Miller, and S. B. Darling, J. Am. Chem. Soc. 134, 13616 (2012).
http://dx.doi.org/10.1021/ja301872s
28.
28. S.-W. Chiu, L.-Y. Lin, H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, Y.-T. Lin, F. Lin, Y.-H. Liu, and K.-T. Wong, Chem. Commun. 48, 1857 (2012).
http://dx.doi.org/10.1039/C2CC16390J
29.
29. Y. Zou, J. Holst, Y. Zhang, and R. J. Holmes, J. Mater. Chem. A 2, 12397 (2014).
http://dx.doi.org/10.1039/C4TA02137A
30.
30. D. Cheyns, J. Poortmans, P. Heremans, C. Deibel, S. Verlaak, B. P. Rand, and J. Genoe, Phys. Rev. B 77, 165332 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.165332
31.
31. A. Foertig, A. Wagenpfahl, T. Gerbich, D. Cheyns, V. Dyakonov, and C. Deibel, Adv. Energy Mater. 2, 1483 (2012).
http://dx.doi.org/10.1002/aenm.201200718
32.
32. T. M. Clarke, C. Lungenschmied, J. Peet, N. Drolet, and A. J. Mozer, Adv. Energy Mater. 5, 1401345 (2015).
http://dx.doi.org/10.1002/aenm.201401345
33.
33. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
34.
34. R. Pandey and R. J. Holmes, Appl. Phys. Lett. 100, 083303 (2012).
http://dx.doi.org/10.1063/1.3686909
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/12/10.1063/1.4931633
Loading
/content/aip/journal/apl/107/12/10.1063/1.4931633
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/12/10.1063/1.4931633
2015-09-25
2016-12-10

Abstract

The power output of an organic photovoltaic cell (OPV) depends on the relationship between device voltage and charge carrier recombination rate. Suppressing recombination until higher voltages allows for increased photocurrent leading to a concomitant increase in power generated. Despite the important role played by recombination in OPVs, its dependence on voltage remains understudied. This is mainly because most techniques used to measure recombination rates are only applicable under open-circuit conditions. In order to address recombination away from open-circuit, a modified charge extraction technique is used to empirically determine the relationship between charge carrier density and device voltage. This relationship, in conjunction with the device photocurrent density-voltage characteristic, is sufficient to connect the recombination rate at open-circuit to any operating voltage.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/12/1.4931633.html;jsessionid=J0qJB2qHjSwzi9yKMuz9ZVsG.x-aip-live-06?itemId=/content/aip/journal/apl/107/12/10.1063/1.4931633&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/12/10.1063/1.4931633&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/12/10.1063/1.4931633'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,