Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M.-S. Kim, B.-G. Kim, and J. Kim, ACS Appl. Mater. Interfaces 1, 1264 (2009).
2. G. F. A. Dibb, F. C. Jamieson, A. Maurano, J. Nelson, and J. R. Durrant, J. Phys. Chem. Lett. 4, 803 (2013).
3. S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, and D. Neher, J. Am. Chem. Soc. 134, 14932 (2012).
4. M. Glatthaar, M. Riede, N. Keegan, K. Sylvester-Hvid, B. Zimmermann, M. Niggemann, A. Hinsch, and A. Gombert, Sol. Energy Mater. Sol. Cells 91, 390 (2007).
5. C. G. Shuttle, R. Hamilton, B. C. O'Regan, J. Nelson, and J. R. Durrant, Proc. Natl. Acad. Sci. U. S. A. 107, 16448 (2010).
6. W. L. Leong, S. R. Cowan, and A. J. Heeger, Adv. Energy Mater. 1, 517 (2011).
7. T. K. Mullenbach, Y. Zou, J. Holst, and R. J. Holmes, J. Appl. Phys. 116, 124513 (2014).
8. B. C. O'Regan, S. Scully, A. C. Mayer, E. Palomares, and J. Durrant, J. Phys. Chem. B 109, 4616 (2005).
9. R. Hamilton, C. G. Shuttle, B. O'Regan, T. C. Hammant, J. Nelson, and J. R. Durrant, J. Phys. Chem. Lett. 1, 1432 (2010).
10. C. G. Shuttle, B. O'Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Phys. Rev. B 78, 113201 (2008).
11. A. Pivrikas, G. Juška, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Österbacka, Phys. Rev. Lett. 94, 176806 (2005).
12. G. Juška, K. Arlauskas, G. Sliaužys, A. Pivrikas, A. J. Mozer, N. S. Sariciftci, M. Scharber, and R. Österbacka, Appl. Phys. Lett. 87, 222110 (2005).
13. A. J. Mozer, G. Dennler, N. S. Sariciftci, M. Westerling, A. Pivrikas, R. Österbacka, and G. Juška, Phys. Rev. B 72, 035217 (2005).
14. A. Baumann, J. Lorrmann, D. Rauh, C. Deibel, and V. Dyakonov, Adv. Mater. 24, 4381 (2012).
15. Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B 110, 25210 (2006).
16. G. Garcia-Belmonte, P. P. Boix, J. Bisquert, M. Sessolo, and H. J. Bolink, Sol. Energy Mater. Sol. Cells 94, 366 (2010).
17. L. Burtone, J. Fischer, K. Leo, and M. Riede, Phys. Rev. B 87, 045432 (2013).
18. C. M. Proctor, C. Kim, D. Neher, and T.-Q. Nguyen, Adv. Funct. Mater. 23, 3584 (2013).
19. J. Nelson, Phys. Rev. B 67, 155209 (2003).
20. C. G. Shuttle, A. Maurano, R. Hamilton, B. C. O'Regan, J. C. de Mello, and J. R. Durrant, Appl. Phys. Lett. 93, 183501 (2008).
21. L. M. Peter, N. W. Duffy, R. L. Wang, and K. G. U. Wijayantha, J. Electroanal. Chem. 524–525, 127 (2002).
22. N. W. Duffy, L. M. Peter, R. M. G. Rajapakse, and K. G. U. Wijayantha, Electrochem. Commun. 2, 658 (2000).
23. J. Kniepert, I. Lange, N. J. van der Kaap, L. J. A. Koster, and D. Neher, Adv. Energy Mater. 4, 1301401 (2014).
24. R. Pandey, Y. Zou, and R. J. Holmes, Appl. Phys. Lett. 101, 033308 (2012).
25. R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, J. Appl. Phys. 105, 053711 (2009).
26. S. M. Menke, W. A. Luhman, and R. J. Holmes, Nat. Mater. 12, 152 (2013).
27. Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.-H. Liu, K.-T. Wong, J. Wen, D. J. Miller, and S. B. Darling, J. Am. Chem. Soc. 134, 13616 (2012).
28. S.-W. Chiu, L.-Y. Lin, H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, Y.-T. Lin, F. Lin, Y.-H. Liu, and K.-T. Wong, Chem. Commun. 48, 1857 (2012).
29. Y. Zou, J. Holst, Y. Zhang, and R. J. Holmes, J. Mater. Chem. A 2, 12397 (2014).
30. D. Cheyns, J. Poortmans, P. Heremans, C. Deibel, S. Verlaak, B. P. Rand, and J. Genoe, Phys. Rev. B 77, 165332 (2008).
31. A. Foertig, A. Wagenpfahl, T. Gerbich, D. Cheyns, V. Dyakonov, and C. Deibel, Adv. Energy Mater. 2, 1483 (2012).
32. T. M. Clarke, C. Lungenschmied, J. Peet, N. Drolet, and A. J. Mozer, Adv. Energy Mater. 5, 1401345 (2015).
33. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).
34. R. Pandey and R. J. Holmes, Appl. Phys. Lett. 100, 083303 (2012).

Data & Media loading...


Article metrics loading...



The power output of an organic photovoltaic cell (OPV) depends on the relationship between device voltage and charge carrier recombination rate. Suppressing recombination until higher voltages allows for increased photocurrent leading to a concomitant increase in power generated. Despite the important role played by recombination in OPVs, its dependence on voltage remains understudied. This is mainly because most techniques used to measure recombination rates are only applicable under open-circuit conditions. In order to address recombination away from open-circuit, a modified charge extraction technique is used to empirically determine the relationship between charge carrier density and device voltage. This relationship, in conjunction with the device photocurrent density-voltage characteristic, is sufficient to connect the recombination rate at open-circuit to any operating voltage.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd