Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Henderson, Q. Rev. Biophys. 28, 171 (1995).
2. E. Knapek and J. Dubochet, J. Mol. Biol. 141, 147 (1980).
3. R. F. Egerton, P. Li, and M. Malac, Micron 35, 399 (2004).
4. M. van Heel, B. Gowen, R. Matadeen, E. V. Orlova, R. Finn, T. Pape, D. Cohen, H. Stark, R. Schmidt, M. Schatz, and A. Patwardhan, Q. Rev. Biophys. 33, 307 (2000).
5. J. W. Miao, H. N. Chapman, J. Kirz, D. Sayre, and K. O. Hodgson, Annu. Rev. Biophys. Biomol. Struct. 33, 157 (2004).
6. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, Nature 406, 752 (2000).
7. V. L. Shneerson, A. Ourmazd, and D. K. Saldin, Acta Crystallogr., Sect. A 64, 303 (2008).
8. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, R. B. Doak, F. R. N. C. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Homke, C. Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kuhnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jonsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.-D. Schroter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. H. Spence, Nature 470, 73 (2011).
9. M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, Phys. Rev. Lett. 104, 095501 (2010).
10. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, Appl. Phys. Lett. 101, 93701 (2012).
11. T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, “Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level,” Ultramicroscopy (to be published).
12. L. Livadaru, J. Mutus, and R. A. Wolkow, J. Appl. Phys. 110, 094305 (2011).
13. H.-W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, J. Opt. Soc. Am. A 14, 2168 (1997).
14. P. Simon, H. Lichte, P. Formanek, M. Lehmann, R. Huhle, W. Carrillo-Cabrera, A. Harscher, and H. Ehrlich, Micron 39, 229 (2008).
15. G. B. Stevens, M. Krüger, T. Latychevskaia, P. Lindner, A. Plückthun, and H.-W. Fink, Eur. Biophys. J. 40, 1197 (2011).
16. T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, Ultramicroscopy 145, 2227 (2014).
17. J. Y. Mutus, L. Livadaru, J. T. Robinson, R. Urban, M. H. Salomons, M. Cloutier, and R. A. Wolkow, New J. Phys. 13, 63011 (2011).
18. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, Appl. Phys. Lett. 101, 113117 (2012).
19. J.-N. Longchamp, C. Escher, T. Latychevskaia, and H.-W. Fink, Ultramicroscopy 145, 8084 (2014).
20. R. R. Nair, P. Blake, J. R. Blake, R. Zan, S. Anissimova, U. Bangert, A. P. Golovanov, S. V. Morozov, A. K. Geim, K. S. Novoselov, and T. Latychevskaia, Appl. Phys. Lett. 97, 153102 (2010).
21. D. Ivanowski, St.-Petersbourg. “Concerning the mosaic disease of the tobacco plant. Trans. J. Johnson,” in Phytopathological Classics Number 7. (American Phytopathological Society, St. Paul, MN, 1892) pp. 27–30.
22. E. F. Smith, J. Mycol. 7, 382 (1894).
23. M. W. Beijerinck, “Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves,” in Phytopathological Classics, No. 7 (American Phytopathological Society, St. Paul, MN., 1898).
24. A. Lustig and A. J. Levine, J. Virol. 66, 4629 (1992).
25. K. Namba and G. Stubbs, Science 231, 1401 (1986).
26. K. Namba, R. Pattanayek, and G. Stubbs, J. Mol. Biol. 208, 307 (1989).
27. T.-W. Jeng, R. A. Crowther, G. Stubbs, and W. Chiu, J. Mol. Biol. 205, 251 (1989).
28. C. Sachse, J. Z. Chen, P.-D. Coureux, M. E. Stroupe, M. Fändrich, and N. Grigorieff, J. Mol. Biol. 371, 812 (2007).
29. D. Gabor, Nature 161, 777 (1948).
30. D. Gabor, Noble Lecture in Physics 1971-1980, ( World Scientific Publishing Co., Pte. Ltd., Singapore, 1992).
31. H.-W. Fink, W. Stocker, and H. Schmid, Phys. Rev. Lett. 65, 1204 (1990).
32. H. W. Fink, IBM J. Res. Dev. 30, 460 (1986).
33. H. W. Fink, W. Stocker, and H. Schmid, J. Vac. Sci. Technol., B 8, 1323 (1990).
34. H. W. Fink, Ultramicroscopy 50, 101 (1993).
35. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H. W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992).
36. H. J. Kreuzer, Micron 26, 503 (1995).
37. T. Latychevskaia and H.-W. Fink, Phys. Rev. Lett. 98, 233901 (2007).
38. T. Latychevskaia and H.-W. Fink, Opt. Express 17, 10697 (2009).
39. T. Latychevskaia, J.-N. Longchamp, and H.-W. Fink, Opt. Express 20, 28871 (2012).
40. T. Latychevskaia and H.-W. Fink, Appl. Opt. 54, 2424 (2015).
41. J.-N. Longchamp, C. Escher, and H.-W. Fink, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 31, 020605 (2013).
42.See supplementary material at for a detailed description of the preparation and deposition method of TMV on graphene.[Supplementary Material]
43. E. Abbe, J. R. Microsc. Soc. 1, 388 (1881).
44. E. Abbe, J. R. Microsc. Soc. 3, 790 (1883).
45. J. Y. Mutus, L. Livadaru, R. Urban, J. Pitters, A. P. Legg, M. H. Salomons, M. Cloutier, and R. A. Wolkow, New J. Phys. 15, 073038 (2013).
46. J. Y. Sgro, in Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses, 1st ed., edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, and L. A. Ball ( Academic Press, London, New York, 2005).
47. F. Bawden, N. W. Pirie, J. D. Bernal, and I. Fankuchen, Nature 138, 1051 (1936).
48. R. E. Franklin, Biochim. Biophys. Acta 19, 203 (1956).
49. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing ( California Technical Publication, 1997).
50. A. Kendall, M. McDonald, and G. Stubbs, Virology 369, 226 (2007).
51. A. C. H. Durham, J. T. Finch, and A. Klug, Nature 229, 37 (1971).
52. P. J. Butler, Philos. Trans. R. Soc., B 354, 537 (1999).
53. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, Phys. Rev. Lett. 110, 255501 (2013).

Data & Media loading...


Article metrics loading...



Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd