Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/13/10.1063/1.4931607
1.
1. R. Henderson, Q. Rev. Biophys. 28, 171 (1995).
http://dx.doi.org/10.1017/S003358350000305X
2.
2. E. Knapek and J. Dubochet, J. Mol. Biol. 141, 147 (1980).
http://dx.doi.org/10.1016/0022-2836(80)90382-4
3.
3. R. F. Egerton, P. Li, and M. Malac, Micron 35, 399 (2004).
http://dx.doi.org/10.1016/j.micron.2004.02.003
4.
4. M. van Heel, B. Gowen, R. Matadeen, E. V. Orlova, R. Finn, T. Pape, D. Cohen, H. Stark, R. Schmidt, M. Schatz, and A. Patwardhan, Q. Rev. Biophys. 33, 307 (2000).
http://dx.doi.org/10.1017/S0033583500003644
5.
5. J. W. Miao, H. N. Chapman, J. Kirz, D. Sayre, and K. O. Hodgson, Annu. Rev. Biophys. Biomol. Struct. 33, 157 (2004).
http://dx.doi.org/10.1146/annurev.biophys.33.110502.140405
6.
6. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, Nature 406, 752 (2000).
http://dx.doi.org/10.1038/35021099
7.
7. V. L. Shneerson, A. Ourmazd, and D. K. Saldin, Acta Crystallogr., Sect. A 64, 303 (2008).
http://dx.doi.org/10.1107/S0108767307067621
8.
8. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, R. B. Doak, F. R. N. C. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Homke, C. Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kuhnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jonsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.-D. Schroter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. H. Spence, Nature 470, 73 (2011).
http://dx.doi.org/10.1038/nature09750
9.
9. M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, Phys. Rev. Lett. 104, 095501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.095501
10.
10. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, Appl. Phys. Lett. 101, 93701 (2012).
http://dx.doi.org/10.1063/1.4748113
11.
11. T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, “Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level,” Ultramicroscopy (to be published).
http://dx.doi.org/10.1016/j.ultramic.2014.11.024
12.
12. L. Livadaru, J. Mutus, and R. A. Wolkow, J. Appl. Phys. 110, 094305 (2011).
http://dx.doi.org/10.1063/1.3658250
13.
13. H.-W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, J. Opt. Soc. Am. A 14, 2168 (1997).
http://dx.doi.org/10.1364/JOSAA.14.002168
14.
14. P. Simon, H. Lichte, P. Formanek, M. Lehmann, R. Huhle, W. Carrillo-Cabrera, A. Harscher, and H. Ehrlich, Micron 39, 229 (2008).
http://dx.doi.org/10.1016/j.micron.2006.11.012
15.
15. G. B. Stevens, M. Krüger, T. Latychevskaia, P. Lindner, A. Plückthun, and H.-W. Fink, Eur. Biophys. J. 40, 1197 (2011).
http://dx.doi.org/10.1007/s00249-011-0743-y
16.
16. T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, Ultramicroscopy 145, 2227 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.11.012
17.
17. J. Y. Mutus, L. Livadaru, J. T. Robinson, R. Urban, M. H. Salomons, M. Cloutier, and R. A. Wolkow, New J. Phys. 13, 63011 (2011).
http://dx.doi.org/10.1088/1367-2630/13/6/063011
18.
18. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, Appl. Phys. Lett. 101, 113117 (2012).
http://dx.doi.org/10.1063/1.4752717
19.
19. J.-N. Longchamp, C. Escher, T. Latychevskaia, and H.-W. Fink, Ultramicroscopy 145, 8084 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.10.018
20.
20. R. R. Nair, P. Blake, J. R. Blake, R. Zan, S. Anissimova, U. Bangert, A. P. Golovanov, S. V. Morozov, A. K. Geim, K. S. Novoselov, and T. Latychevskaia, Appl. Phys. Lett. 97, 153102 (2010).
http://dx.doi.org/10.1063/1.3492845
21.
21. D. Ivanowski, St.-Petersbourg. “Concerning the mosaic disease of the tobacco plant. Trans. J. Johnson,” in Phytopathological Classics Number 7. (American Phytopathological Society, St. Paul, MN, 1892) pp. 27–30.
22.
22. E. F. Smith, J. Mycol. 7, 382 (1894).
http://dx.doi.org/10.2307/3752774
23.
23. M. W. Beijerinck, “Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves,” in Phytopathological Classics, No. 7 (American Phytopathological Society, St. Paul, MN., 1898).
24.
24. A. Lustig and A. J. Levine, J. Virol. 66, 4629 (1992).
25.
25. K. Namba and G. Stubbs, Science 231, 1401 (1986).
http://dx.doi.org/10.1126/science.3952490
26.
26. K. Namba, R. Pattanayek, and G. Stubbs, J. Mol. Biol. 208, 307 (1989).
http://dx.doi.org/10.1016/0022-2836(89)90391-4
27.
27. T.-W. Jeng, R. A. Crowther, G. Stubbs, and W. Chiu, J. Mol. Biol. 205, 251 (1989).
http://dx.doi.org/10.1016/0022-2836(89)90379-3
28.
28. C. Sachse, J. Z. Chen, P.-D. Coureux, M. E. Stroupe, M. Fändrich, and N. Grigorieff, J. Mol. Biol. 371, 812 (2007).
http://dx.doi.org/10.1016/j.jmb.2007.05.088
29.
29. D. Gabor, Nature 161, 777 (1948).
http://dx.doi.org/10.1038/161777a0
30.
30. D. Gabor, Noble Lecture in Physics 1971-1980, ( World Scientific Publishing Co., Pte. Ltd., Singapore, 1992).
31.
31. H.-W. Fink, W. Stocker, and H. Schmid, Phys. Rev. Lett. 65, 1204 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1204
32.
32. H. W. Fink, IBM J. Res. Dev. 30, 460 (1986).
http://dx.doi.org/10.1147/rd.305.0460
33.
33. H. W. Fink, W. Stocker, and H. Schmid, J. Vac. Sci. Technol., B 8, 1323 (1990).
http://dx.doi.org/10.1116/1.584911
34.
34. H. W. Fink, Ultramicroscopy 50, 101 (1993).
http://dx.doi.org/10.1016/0304-3991(93)90095-F
35.
35. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H. W. Fink, and H. Schmid, Ultramicroscopy 45, 381 (1992).
http://dx.doi.org/10.1016/0304-3991(92)90150-I
36.
36. H. J. Kreuzer, Micron 26, 503 (1995).
http://dx.doi.org/10.1016/0968-4328(95)00021-6
37.
37. T. Latychevskaia and H.-W. Fink, Phys. Rev. Lett. 98, 233901 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.233901
38.
38. T. Latychevskaia and H.-W. Fink, Opt. Express 17, 10697 (2009).
http://dx.doi.org/10.1364/OE.17.010697
39.
39. T. Latychevskaia, J.-N. Longchamp, and H.-W. Fink, Opt. Express 20, 28871 (2012).
http://dx.doi.org/10.1364/OE.20.028871
40.
40. T. Latychevskaia and H.-W. Fink, Appl. Opt. 54, 2424 (2015).
http://dx.doi.org/10.1364/AO.54.002424
41.
41. J.-N. Longchamp, C. Escher, and H.-W. Fink, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 31, 020605 (2013).
http://dx.doi.org/10.1116/1.4793746
42.
42.See supplementary material at http://dx.doi.org/10.1063/1.4931607 for a detailed description of the preparation and deposition method of TMV on graphene.[Supplementary Material]
43.
43. E. Abbe, J. R. Microsc. Soc. 1, 388 (1881).
http://dx.doi.org/10.1111/j.1365-2818.1881.tb05909.x
44.
44. E. Abbe, J. R. Microsc. Soc. 3, 790 (1883).
http://dx.doi.org/10.1111/j.1365-2818.1883.tb05956.x
45.
45. J. Y. Mutus, L. Livadaru, R. Urban, J. Pitters, A. P. Legg, M. H. Salomons, M. Cloutier, and R. A. Wolkow, New J. Phys. 15, 073038 (2013).
http://dx.doi.org/10.1088/1367-2630/15/7/073038
46.
46. J. Y. Sgro, in Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses, 1st ed., edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, and L. A. Ball ( Academic Press, London, New York, 2005).
47.
47. F. Bawden, N. W. Pirie, J. D. Bernal, and I. Fankuchen, Nature 138, 1051 (1936).
http://dx.doi.org/10.1038/1381051a0
48.
48. R. E. Franklin, Biochim. Biophys. Acta 19, 203 (1956).
http://dx.doi.org/10.1016/0006-3002(56)90421-8
49.
49. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing ( California Technical Publication, 1997).
50.
50. A. Kendall, M. McDonald, and G. Stubbs, Virology 369, 226 (2007).
http://dx.doi.org/10.1016/j.virol.2007.08.013
51.
51. A. C. H. Durham, J. T. Finch, and A. Klug, Nature 229, 37 (1971).
http://dx.doi.org/10.1038/newbio229037a0
52.
52. P. J. Butler, Philos. Trans. R. Soc., B 354, 537 (1999).
http://dx.doi.org/10.1098/rstb.1999.0405
53.
53. J.-N. Longchamp, T. Latychevskaia, C. Escher, and H.-W. Fink, Phys. Rev. Lett. 110, 255501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.255501
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/13/10.1063/1.4931607
Loading
/content/aip/journal/apl/107/13/10.1063/1.4931607
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/13/10.1063/1.4931607
2015-09-28
2016-07-01

Abstract

Modern structural biology relies on Nuclear Magnetic Resonance (NMR), X-ray crystallography, and cryo-electron microscopy for gaining information on biomolecules at nanometer, sub-nanometer, or atomic resolution. All these methods, however, require averaging over a vast ensemble of entities, and hence knowledge on the conformational landscape of an individual particle is lost. Unfortunately, there are now strong indications that even X-ray free electron lasers will not be able to image individual molecules but will require nanocrystal samples. Here, we show that non-destructive structural biology of single particles has now become possible by means of low-energy electron holography. As an example, individual tobacco mosaic virions deposited on ultraclean freestanding graphene are imaged at 1 nm resolution revealing structural details arising from the helical arrangement of the outer protein shell of the virus. Since low-energy electron holography is a lens-less technique and since electrons with a deBroglie wavelength of approximately 1 Å do not impose radiation damage to biomolecules, the method has the potential for Angstrom resolution imaging of single biomolecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/13/1.4931607.html;jsessionid=VVr4Sho8mJ_yMwHaj4SHgXP-.x-aip-live-03?itemId=/content/aip/journal/apl/107/13/10.1063/1.4931607&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/13/10.1063/1.4931607&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/13/10.1063/1.4931607'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,