Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987).
2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
3. S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, Adv. Mater. 23, 3511 (2011).
4. M. Eritt, C. May, K. Leo, M. Toerker, and C. Radehaus, Thin Solid Films 518, 3042 (2010).
5. L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, and T. N. Jackson, Appl. Phys. Lett. 88, 083502 (2006).
6. K. Asadi, P. W. M. Blom, and D. M. de Leeuw, Adv. Mater. 23, 865 (2011).
7. L. Ma, J. Liu, S. Pyo, and Y. Yang, Appl. Phys. Lett. 80, 362 (2002).
8. K. S. Yook, S. O. Jeon, C. W. Joo, and J. Y. Lee, J. Ind. Eng. Chem. 15, 328 (2009).
9. S. H. Kim, K. S. Yook, J. Y. Lee, and J. Jang, Appl. Phys. Lett. 93, 053306 (2008).
10. S. H. Kim, K. S. Yook, J. Jang, and J. Y. Lee, Synth. Met. 158, 861 (2008).
11. K. S. Yook, S. O. Jeon, O. Y. Kim, and J. Y. Lee, Electrochem. Solid-State Lett. 14, J31 (2011).
12. C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, Sci. Rep. 4, 5121 (2014).
13. S. Nau, C. Wolf, S. Sax, and E. J. W. List-Kratochvil, Adv. Mater. 27, 1048 (2015).
14. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
15. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
16. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).
17. J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, Nature 464, 873 (2010).
18. J. C. Scott and L. D. Bozano, Adv. Mater. 19, 1452 (2007).
19. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, and K.-G. Neoh, Prog. Polym. Sci. 33, 917 (2008).
20. B. Cho, S. Song, Y. Ji, T.-W. Kim, and T. Lee, Adv. Funct. Mater. 21, 2806 (2011).
21. S. Nau, C. Wolf, K. Popovic, A. Blümel, F. Santoni, A. Gagliardi, A. di Carlo, S. Sax, and E. J. W. List-Kratochvil, Adv. Electron. Mater. 1, 140003 (2015).
22. J. G. Simmons and R. R. Verderber, Proc. R. Soc. Lond. A. Math. Phys. Sci. 301, 77 (1967).
23. C. W. Chu, J. Ouyang, J.-H. Tseng, and Y. Yang, Adv. Mater. 17, 1440 (2005).
24. S. Karthaüuser, B. Luüssem, M. Weides, M. Alba, A. Besmehn, R. Oligschlaeger, and R. Waser, J. Appl. Phys. 100, 094504 (2006).
25. S. Nau, S. Sax, and E. J. W. List-Kratochvil, Adv. Mater. 26, 2508 (2014).
26. Y. Busby, S. Nau, S. Sax, E. J. W. List-Kratochvil, J. Novak, R. Banerjee, F. Schreiber, and J. J. Pireaux, J. Appl. Phys. 118, 075501 (2015).
27. S. Nau, S. Sax, and E. J. W. List-Kratochvil, “ Downscaling of Organic Resistive Memory Devices to the Nanoscale,” 2015 (unpublished).
28.See supplementary material at for the repeated pulsed operation of organic resistive switching and for IV-luminance characteristics and electroluminescence spectrum.[Supplementary Material]
29. S. Nau, N. Schulte, S. Winkler, J. Frisch, A. Vollmer, N. Koch, S. Sax, and E. J. W. List, Adv. Mater. 25, 4420 (2013).
30. E. J. W. List, L. Holzer, S. Tasch, G. Leising, U. Scherf, K. Müllen, M. Catellani, and S. Luzzati, Solid State Commun. 109, 455 (1999).
31. S. Tasch, E. J. W. List, O. Eckström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, Appl. Phys. Lett. 71, 2883 (1997).
32. S. Kappaun, S. Eder, S. Sax, R. Saf, K. Mereiter, E. J. W. List, and C. Slugovc, J. Mater. Chem. 16, 4389 (2006).
33. J. Huang, G. Li, E. Wu, Q. Xu, and Y. Yang, Adv. Mater. 18, 114 (2006).
34. B. Hu and F. E. Karasz, J. Appl. Phys. 93, 1995 (2003).
35. H. T. Nicolai, A. Hof, and P. W. M. Blom, Adv. Funct. Mater. 22, 2040 (2012).
36. S. Sax, E. Fisslthaler, S. Kappaun, C. Konrad, K. Waich, T. Mayr, C. Slugovc, I. Klimant, and E. J. W. List, Adv. Mater. 21, 3483 (2009).
37. T.-W. Kim, D. F. Zeigler, O. Acton, H.-L. Yip, H. Ma, and A. K.-Y. Jen, Adv. Mater. 24, 828 (2012).
38. Y. Ji, D. F. Zeigler, D. S. Lee, H. Choi, A. K.-Y. Jen, H. C. Ko, and T.-W. Kim, Nat. Commun. 4, 2707 (2013).
39. B. Cho, T.-W. Kim, S. Song, Y. Ji, M. Jo, H. Hwang, G.-Y. Jung, and T. Lee, Adv. Mater. 22, 1228 (2010).

Data & Media loading...


Article metrics loading...



The rising significance of organic light emitting diodes as lighting devices puts their peripheral devices into focus as well. Here, we present an organic optoelectronic device allowing for multistable luminance and emission color control. The introduced device is monolithically built up from organic resistive switching elements processed directly on top of a polymer light emitting diode(PLED). This realization, representing a serial connection, allows for precise control of the voltage drop across and thus the current density through the PLED resulting in a control of its luminance. Additionally, by using a fluorescence-phosphoresence host-guest blend as the light emitting layer, it is possible to tune the emission color in the same way. Specifically, focus was set on color temperature tuning in a white light emitting diode. Notable, for all different luminance and color states, the driving voltage is constant, enabling, e.g., a conventional battery as power supply.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd