Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/13/10.1063/1.4932112
1.
1. C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
http://dx.doi.org/10.1038/347539a0
3.
3. S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, Adv. Mater. 23, 3511 (2011).
http://dx.doi.org/10.1002/adma.201101066
4.
4. M. Eritt, C. May, K. Leo, M. Toerker, and C. Radehaus, Thin Solid Films 518, 3042 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.09.188
5.
5. L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, and T. N. Jackson, Appl. Phys. Lett. 88, 083502 (2006).
http://dx.doi.org/10.1063/1.2178213
6.
6. K. Asadi, P. W. M. Blom, and D. M. de Leeuw, Adv. Mater. 23, 865 (2011).
http://dx.doi.org/10.1002/adma.201003213
7.
7. L. Ma, J. Liu, S. Pyo, and Y. Yang, Appl. Phys. Lett. 80, 362 (2002).
http://dx.doi.org/10.1063/1.1436274
8.
8. K. S. Yook, S. O. Jeon, C. W. Joo, and J. Y. Lee, J. Ind. Eng. Chem. 15, 328 (2009).
http://dx.doi.org/10.1016/j.jiec.2008.11.015
9.
9. S. H. Kim, K. S. Yook, J. Y. Lee, and J. Jang, Appl. Phys. Lett. 93, 053306 (2008).
http://dx.doi.org/10.1063/1.2964178
10.
10. S. H. Kim, K. S. Yook, J. Jang, and J. Y. Lee, Synth. Met. 158, 861 (2008).
http://dx.doi.org/10.1016/j.synthmet.2008.06.004
11.
11. K. S. Yook, S. O. Jeon, O. Y. Kim, and J. Y. Lee, Electrochem. Solid-State Lett. 14, J31 (2011).
http://dx.doi.org/10.1149/1.3582803
12.
12. C.-W. Chang, W.-C. Tan, M.-L. Lu, T.-C. Pan, Y.-J. Yang, and Y.-F. Chen, Sci. Rep. 4, 5121 (2014).
http://dx.doi.org/10.1038/srep05121
13.
13. S. Nau, C. Wolf, S. Sax, and E. J. W. List-Kratochvil, Adv. Mater. 27, 1048 (2015).
http://dx.doi.org/10.1002/adma.201403295
14.
14. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
15.
15. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
16.
16. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
17.
17. J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, Nature 464, 873 (2010).
http://dx.doi.org/10.1038/nature08940
18.
18. J. C. Scott and L. D. Bozano, Adv. Mater. 19, 1452 (2007).
http://dx.doi.org/10.1002/adma.200602564
19.
19. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, and K.-G. Neoh, Prog. Polym. Sci. 33, 917 (2008).
http://dx.doi.org/10.1016/j.progpolymsci.2008.08.001
20.
20. B. Cho, S. Song, Y. Ji, T.-W. Kim, and T. Lee, Adv. Funct. Mater. 21, 2806 (2011).
http://dx.doi.org/10.1002/adfm.201100686
21.
21. S. Nau, C. Wolf, K. Popovic, A. Blümel, F. Santoni, A. Gagliardi, A. di Carlo, S. Sax, and E. J. W. List-Kratochvil, Adv. Electron. Mater. 1, 140003 (2015).
http://dx.doi.org/10.1002/aelm.201400003
22.
22. J. G. Simmons and R. R. Verderber, Proc. R. Soc. Lond. A. Math. Phys. Sci. 301, 77 (1967).
http://dx.doi.org/10.1098/rspa.1967.0191
23.
23. C. W. Chu, J. Ouyang, J.-H. Tseng, and Y. Yang, Adv. Mater. 17, 1440 (2005).
http://dx.doi.org/10.1002/adma.200500225
24.
24. S. Karthaüuser, B. Luüssem, M. Weides, M. Alba, A. Besmehn, R. Oligschlaeger, and R. Waser, J. Appl. Phys. 100, 094504 (2006).
http://dx.doi.org/10.1063/1.2364036
25.
25. S. Nau, S. Sax, and E. J. W. List-Kratochvil, Adv. Mater. 26, 2508 (2014).
http://dx.doi.org/10.1002/adma.201305369
26.
26. Y. Busby, S. Nau, S. Sax, E. J. W. List-Kratochvil, J. Novak, R. Banerjee, F. Schreiber, and J. J. Pireaux, J. Appl. Phys. 118, 075501 (2015).
http://dx.doi.org/10.1063/1.4928622
27.
27. S. Nau, S. Sax, and E. J. W. List-Kratochvil, “ Downscaling of Organic Resistive Memory Devices to the Nanoscale,” 2015 (unpublished).
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4932112 for the repeated pulsed operation of organic resistive switching and for IV-luminance characteristics and electroluminescence spectrum.[Supplementary Material]
29.
29. S. Nau, N. Schulte, S. Winkler, J. Frisch, A. Vollmer, N. Koch, S. Sax, and E. J. W. List, Adv. Mater. 25, 4420 (2013).
http://dx.doi.org/10.1002/adma.201300832
30.
30. E. J. W. List, L. Holzer, S. Tasch, G. Leising, U. Scherf, K. Müllen, M. Catellani, and S. Luzzati, Solid State Commun. 109, 455 (1999).
http://dx.doi.org/10.1016/S0038-1098(98)00586-9
31.
31. S. Tasch, E. J. W. List, O. Eckström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, Appl. Phys. Lett. 71, 2883 (1997).
http://dx.doi.org/10.1063/1.120205
32.
32. S. Kappaun, S. Eder, S. Sax, R. Saf, K. Mereiter, E. J. W. List, and C. Slugovc, J. Mater. Chem. 16, 4389 (2006).
http://dx.doi.org/10.1039/b611738d
33.
33. J. Huang, G. Li, E. Wu, Q. Xu, and Y. Yang, Adv. Mater. 18, 114 (2006).
http://dx.doi.org/10.1002/adma.200501105
34.
34. B. Hu and F. E. Karasz, J. Appl. Phys. 93, 1995 (2003).
http://dx.doi.org/10.1063/1.1536018
35.
35. H. T. Nicolai, A. Hof, and P. W. M. Blom, Adv. Funct. Mater. 22, 2040 (2012).
http://dx.doi.org/10.1002/adfm.201102699
36.
36. S. Sax, E. Fisslthaler, S. Kappaun, C. Konrad, K. Waich, T. Mayr, C. Slugovc, I. Klimant, and E. J. W. List, Adv. Mater. 21, 3483 (2009).
http://dx.doi.org/10.1002/adma.200802237
37.
37. T.-W. Kim, D. F. Zeigler, O. Acton, H.-L. Yip, H. Ma, and A. K.-Y. Jen, Adv. Mater. 24, 828 (2012).
http://dx.doi.org/10.1002/adma.201104266
38.
38. Y. Ji, D. F. Zeigler, D. S. Lee, H. Choi, A. K.-Y. Jen, H. C. Ko, and T.-W. Kim, Nat. Commun. 4, 2707 (2013).
http://dx.doi.org/10.1038/ncomms3707
39.
39. B. Cho, T.-W. Kim, S. Song, Y. Ji, M. Jo, H. Hwang, G.-Y. Jung, and T. Lee, Adv. Mater. 22, 1228 (2010).
http://dx.doi.org/10.1002/adma.200903203
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/13/10.1063/1.4932112
Loading
/content/aip/journal/apl/107/13/10.1063/1.4932112
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/13/10.1063/1.4932112
2015-09-30
2016-09-26

Abstract

The rising significance of organic light emitting diodes as lighting devices puts their peripheral devices into focus as well. Here, we present an organic optoelectronic device allowing for multistable luminance and emission color control. The introduced device is monolithically built up from organic resistive switching elements processed directly on top of a polymer light emitting diode(PLED). This realization, representing a serial connection, allows for precise control of the voltage drop across and thus the current density through the PLED resulting in a control of its luminance. Additionally, by using a fluorescence-phosphoresence host-guest blend as the light emitting layer, it is possible to tune the emission color in the same way. Specifically, focus was set on color temperature tuning in a white light emitting diode. Notable, for all different luminance and color states, the driving voltage is constant, enabling, e.g., a conventional battery as power supply.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/13/1.4932112.html;jsessionid=lQXd12rxBEsQ4hgC7OTjXzlH.x-aip-live-02?itemId=/content/aip/journal/apl/107/13/10.1063/1.4932112&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/13/10.1063/1.4932112&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/13/10.1063/1.4932112'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,