Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H.-Y. Ryu, G.-H. Ryu, S.-H. Lee, and H.-J. Kim, J. Korean Phys. Soc. 63, 180184 (2013).
2. M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, Appl. Phys. Lett. 101, 223509 (2012).
3. M. Krames, O. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. Craford, J. Disp. Technol. 3, 160175 (2007).
4. A. Löffler and M. Binder, Compd. Semicond. 19(7), 3236 (2013).
5. Z. Lin, R. Hao, G. Li, and S. Zhang, Jpn. J. Appl. Phys., Part 1 54, 022102 (2015).
6. K. P. O'Donnell, M. Auf der Maur, A. Di Carlo, K. Lorenz, and SORBET Consortium, Phys. Status Solidi RRL 6, 4952 (2012).
7. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 41884190 (1996).
8. T. Langer, A. Kruse, F. A. Ketzer, A. Schwiegel, L. Hoffmann, H. Jnen, H. Bremers, U. Rossow, and A. Hangleiter, Phys. Status Solidi C 8, 21702172 (2011).
9. T. Langer, H. Jnen, A. Kruse, H. Bremers, U. Rossow, and A. Hangleiter, Appl. Phys. Lett. 103, 022108 (2013).
10. M. H. Crawford, IEEE J. Sel. Top. Quantum Electron. 15, 10281040 (2009).
11. F.-P. Massabuau, M. Davies, F. Oehler, S. Pamenter, E. Thrush, M. Kappers, A. Kovács, T. Williams, M. Hopkins, C. Humphreys et al., Appl. Phys. Lett. 105, 112110 (2014).
12. D. Koleske, A. Wickenden, R. Henry, and M. Twigg, J. Cryst. Growth 242, 5569 (2002).
13. M. J. Kappers, T. Zhu, S.-L. Sahonta, C. J. Humphreys, and R. A. Oliver, Phys. Status Solidi C 12, 403407 (2015).
14. A. Armstrong, M. Crawford, and D. Koleske, J. Electron. Mater. 40, 369376 (2011).
15. E. Gr, Z. Zhang, S. Krishnamoorthy, S. Rajan, and S. A. Ringel, Appl. Phys. Lett. 99, 092109 (2011).
16. A. Armstrong, T. A. Henry, D. D. Koleske, M. H. Crawford, and S. R. Lee, Opt. Express 20, A812A821 (2012).
17. A. Uedono, S. Ishibashi, N. Oshima, R. Suzuki, and M. Sumiya, ECS Trans. 61, 1930 (2014).
18. A. Janotti, J. L. Lyons, and C. G. Van de Walle, Physica Status Solidi A 209, 6570 (2012).
19. T. Obata, J. Ichi Iwata, K. Shiraishi, and A. Oshiyama, J. Cryst. Growth 311, 27722775 (2009).
20. T. Langer, H.-G. Pietscher, H. Bremers, U. Rossow, D. Menzel, and A. Hangleiter, Proc. SPIE 8625, 862522 (2013).
21. S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett. 86, 021914 (2005).
22. D. Look, D. Reynolds, Z.-Q. Fang, J. Hemsky, J. Sizelove, and R. Jones, Mater. Sci. Eng., B 66, 3032 (1999).
23. R. A. Oliver, F. C.-P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, D. W. E. Allsopp, and C. J. Humphreys, Appl. Phys. Lett. 103, 141114 (2013).
24. D. M. Graham, A. Soltani-Vala, P. Dawson, M. J. Godfrey, T. M. Smeeton, J. S. Barnard, M. J. Kappers, C. J. Humphreys, and E. J. Thrush, J. Appl. Phys. 97, 103508 (2005).
25. A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer, S. Lahmann, C. Netzel, N. Riedel, and U. Rossow, Phys. Status Solidi A 201, 28082813 (2004).
26. M. J. Davies, P. Dawson, F. C.-P. Massabuau, F. Oehler, R. A. Oliver, M. J. Kappers, T. J. Badcock, and C. J. Humphreys, Phys. Status Solidi C 11, 750753 (2014).
27. M. J. Davies, F. C.-P. Massabuau, P. Dawson, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, Phys. Status Solidi C 11, 710713 (2014).
28. C. E. Martinez, N. M. Stanton, A. J. Kent, D. M. Graham, P. Dawson, M. J. Kappers, and C. J. Humphreys, J. Appl. Phys. 98, 053509 (2005).
29. D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, Appl. Phys. Lett. 88, 071105 (2006).
30. A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, Phys. Rev. B 68, 045331 (2003).
31. M. J. Davies, T. J. Badcock, P. Dawson, M. J. Kappers, R. A. Oliver, and C. J. Humphreys, Appl. Phys. Lett. 102, 022106 (2013).
32. S. Hammersley, D. Watson-Parris, P. Dawson, M. Godfrey, T. Badcock, M. Kappers, C. McAleese, R. Oliver, and C. Humphreys, J. Appl. Phys. 111, 083512 (2012).
33. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
34. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
35. I. Rozhansky and D. Zakheim, Semiconductors 40, 839845 (2006).
36. M. F. Schubert, J. Xu, Q. Dai, F. W. Mont, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 94, 081114 (2009).
37. H. Murotani, Y. Yamada, Y. Honda, and H. Amano, Phys. Status Solidi B 252, 940945 (2015).

Data & Media loading...


Article metrics loading...



InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd