Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/13/10.1063/1.4932530
1.
1. I. Kang, H.-J. Yun, D. S. Chung, S.-K. Kwon, and Y.-H. Kim, J. Am. Chem. Soc. 135, 14896 (2013).
http://dx.doi.org/10.1021/ja405112s
2.
2. G. Kim, S.-J. Kang, G. K. Dutta, Y.-K. Han, T. J. Shin, Y.-Y. Noh, and C. Yang, J. Am. Chem. Soc. 136, 9477 (2014).
http://dx.doi.org/10.1021/ja504537v
3.
3. J. Li, Y. Zhao, H. S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, Sci. Rep. 2, 754 (2012).
http://dx.doi.org/10.1038/srep00754
4.
4. H. Chen, Y. Guo, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Adv. Mater. 24, 4618 (2012).
http://dx.doi.org/10.1002/adma.201201318
5.
5. K. H. Park, K. H. Cheon, Y.-J. Lee, D. S. Chung, S.-K. Kwon, and Y.-H. Kim, Chem. Commun. 51, 8120 (2015).
http://dx.doi.org/10.1039/C5CC02104A
6.
6. J. Mei, H.-C. Wu, Y. Diao, A. Appleton, H. Wang, Y. Zhou, W.-Y. Lee, T. Kurosawa, W.-C. Chen, and Z. Bao, Adv. Funct. Mater. 25, 3455 (2015).
http://dx.doi.org/10.1002/adfm.201500684
7.
7. R. Kim, P. S. K. Amegadze, I. Kang, H.-J. Yun, Y.-Y. Noh, S.-K. Kwon, and Y.-H. Kim, Adv. Funct. Mater. 23, 5719 (2013).
http://dx.doi.org/10.1002/adfm.201301197
8.
8. H. Sirringhaus, Adv. Mater. 26, 1319 (2014).
http://dx.doi.org/10.1002/adma.201304346
9.
9. D. T. Duong, C. Wang, E. Antono, M. F. Toney, and A. Salleo, Org. Electron. 14, 1330 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.02.028
10.
10. L. Ma, W. H. Lee, Y. D. Park, J. S. Kim, H. S. Lee, and K. Cho, Appl. Phys. Lett. 92, 063310 (2008).
http://dx.doi.org/10.1063/1.2883927
11.
11. I. D. V. Ingram, D. J. Tate, A. V. S. Parry, R. S. Sprick, and M. L. Turner, Appl. Phys. Lett. 104, 153304 (2014).
http://dx.doi.org/10.1063/1.4871096
12.
12. J. E. Cochrans, M. J. N. Junk, A. M. Glaudell, P. L. Miller, J. S. Cowart, M. F. Toney, C. J. Hawker, B. F. Chmelka, and M. L. Chabinyc, Macromolecules 47, 6836 (2014).
http://dx.doi.org/10.1021/ma501547h
13.
13. P. Pingel and D. Neher, Phys. Rev. B 87, 115209 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115209
14.
14. C. B. Nielsen, M. Turbiez, and I. McCulloch, Adv. Mater. 25, 1859 (2013).
http://dx.doi.org/10.1002/adma.201201795
15.
15. K. H. Hendriks, G. H. L. Heintges, V. S. Gevaerts, M. M. Wienk, and R. A. J. Janssen, Angew. Chem. Int. Ed. 52, 8341 (2013).
http://dx.doi.org/10.1002/anie.201302319
16.
16. Z. Q. Gao, B. X. Mi, G. Z. Xu, Y. Q. Wan, M. L. Gong, K. W. Cheah, and C. H. Chen, Chem. Commun. 2008(1), 117.
http://dx.doi.org/10.1039/B713566A
17.
17. H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
http://dx.doi.org/10.1002/adma.200501152
18.
18. B. Lüssem, M. Riede, and K. Leo, Phys. Status Solidi A 210, 9 (2013).
http://dx.doi.org/10.1002/pssa.201228310
19.
19. X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, and D. M. DeLongchamp, Nat. Commun. 4, 2238 (2013).
http://dx.doi.org/10.1038/ncomms3238
20.
20. R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P. Smith, M. F. Toney, and A. Salleo, Nat. Mater. 12, 1038 (2013).
http://dx.doi.org/10.1038/nmat3722
21.
21. J. Cho, Y. Ko, K. H. Cheon, H.-J. Yun, H.-K. Lee, S.-K. Kwon, Y.-H. Kim, S. T. Chang, and D. S. Chung, J. Mater. Chem. C 3, 2817 (2015).
http://dx.doi.org/10.1039/C4TC02674H
22.
22. H. Chen, Y. Guo, Z. Mao, D. Gao, and G. Yu, J. Polym. Sci. A Polym. Chem. 52, 1970 (2014).
http://dx.doi.org/10.1002/pola.27204
23.
23. J. Rivnay, S. C. B. Mannsfeld, C. E. Miller, A. Salleo, and M. F. Toney, Chem. Rev. 112, 5488 (2012).
http://dx.doi.org/10.1021/cr3001109
24.
24. G. Horowitz, R. Hajlaoui, and F. Kouki, Eur. Phys. J. AP 1, 361 (1998).
http://dx.doi.org/10.1051/epjap:1998157
25.
25. G. Horowitz, F. Garnier, A. Yassar, R. Hajlaoui, and F. Kouki, Adv. Mater. 8, 52 (1996).
http://dx.doi.org/10.1002/adma.19960080109
26.
26. S. Park, J. Cho, M. J. Ko, D. S. Chung, and H. J. Son, Macromolecules 48, 3883 (2015).
http://dx.doi.org/10.1021/acs.macromol.5b00369
27.
27. B. W. D'Andrade, S. Datta, S. R. Forrest, P. Djurovich, E. Polikarpov, and M. E. Thompson, Org. Electron. 6, 11 (2005).
http://dx.doi.org/10.1016/j.orgel.2005.01.002
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/13/10.1063/1.4932530
Loading
/content/aip/journal/apl/107/13/10.1063/1.4932530
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/13/10.1063/1.4932530
2015-10-02
2016-09-27

Abstract

The effects of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) doping on diketopyrrolo-pyrrole-based polymeric semiconductors in terms of charge transport behavior and structural ordering are systematically investigated. Although the energy level offset between the polymeric semiconductor and the F4TCNQ acceptor was not particularly large, ultraviolet photoelectron spectroscopy analyses revealed that a low doping ratio of 1 wt. % is sufficient to tune the energy distance between the Fermi level and the HOMO level, reaching saturation at roughly 5 wt. %, which is further confirmed by the depletion mode measurements of field effect transistors (FETs). Structural analyses using grazing-incidence X-ray diffraction (GIXD) show that the overall degree of edge-on orientation is disturbed by the addition of dopants, with significant influence appearing at high doping ratios (>3 wt. %). The calculated charge carrier mobility from accumulation mode measurements of FETs showed a maximum value of 2 cm2/V·s at the optimized doping ratio of 1%, enabled by additional holes in the channel region, which results in a roughly 40% increase relative to the undoped device. Further increases in the doping ratio, however, resulted in worse FET performance, which can be attributed to structural deformation. This result suggests that the electrochemical doping method can be also applied to donor-acceptor copolymers to further enhance their charge transport characteristics, once the optimized doping condition has been established.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/13/1.4932530.html;jsessionid=UIyWkJFOTkBflBdNgTA-UXXi.x-aip-live-06?itemId=/content/aip/journal/apl/107/13/10.1063/1.4932530&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/13/10.1063/1.4932530&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/13/10.1063/1.4932530'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,