Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/14/10.1063/1.4932098
1.
1. R. He and P. Yang, “ Giant piezoresistance effect in silicon nanowires,” Nat. Nanotechnol. 1, 42 (2006).
http://dx.doi.org/10.1038/nnano.2006.53
2.
2. M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “ Silicon device scaling to the sub-10-nm regime,” Science (New York) 306, 2057 (2004).
http://dx.doi.org/10.1126/science.1100731
3.
3. M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “ Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58, R13371 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R13371
4.
4. G. Jacopin, L. Rigutti, S. Bellei, P. Lavenus, F. H. Julien, A. V. Davydov, D. Tsvetkov, K. A. Bertness, N. A. Sanford, J. B. Schlager, and M. Tchernycheva, “ Photoluminescence polarization in strained GaN/AlGaN core/shell nanowires,” Nanotechnology 23, 325701 (2012).
http://dx.doi.org/10.1088/0957-4484/23/32/325701
5.
5. T. Zhu and J. Li, “ Ultra-strength materials,” Prog. Mater. Sci. 55, 710757 (2010).
http://dx.doi.org/10.1016/j.pmatsci.2010.04.001
6.
6. C. P. Dietrich, M. Lange, F. J. Klüpfel, H. Von Wenckstern, R. Schmidt-Grund, and M. Grundmann, “ Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98, 031105 (2011).
http://dx.doi.org/10.1063/1.3544939
7.
7. X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z. M. Liao, B. Deveaud, and D. Yu, “ Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412 (2014).
http://dx.doi.org/10.1021/nn4062353
8.
8. G. Jacopin, M. Shahmohammadi, J.-D. Ganière, and B. Deveaud, “ Hopping process of bound excitons under an energy gradient,” Appl. Phys. Lett. 104, 042109 (2014).
http://dx.doi.org/10.1063/1.4863319
9.
9. A. Miller and E. Abrahams, “ Impurity conduction at low concentrations,” Phys. Rev. 120, 745 (1960).
http://dx.doi.org/10.1103/PhysRev.120.745
10.
10. X. W. Fu, Z. M. Liao, R. Liu, J. Xu, and D. Yu, “ Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires,” ACS Nano 7, 8891 (2013).
http://dx.doi.org/10.1021/nn403378g
11.
11. M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J.-D. Ganière, “ Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479 (2005).
http://dx.doi.org/10.1038/nature04298
12.
12. B. Lambert, F. Clerot, B. Deveaud, A. Chomette, G. Talalaeff, A. Regreny, and B. Sermage, “ Electron and hole transport properties in GaAs-AlGaAs superlattices,” J. Lumin. 44, 277 (1989).
http://dx.doi.org/10.1016/0022-2313(89)90063-X
13.
13. J. Yoo, B. Chon, W. Tang, T. Joo, L. S. Dang, and G. C. Yi, “ Excitonic origin of enhanced luminescence quantum efficiency in MgZnO/ZnO coaxial nanowire heterostructures,” Appl. Phys. Lett. 100, 223103 (2012).
http://dx.doi.org/10.1063/1.4721519
14.
14. A. Einstein, “ Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322, 549 (1905).
http://dx.doi.org/10.1002/andp.19053220806
15.
15. L. Li, N. Lu, M. Liu, and H. Bässler, “ General Einstein relation model in disordered organic semiconductors under quasiequilibrium,” Phys. Rev. B 90, 214107 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.214107
16.
16. G. A. Wetzelaer, L. J. A. Koster, and P. W. M. Blom, “ Validity of the einstein relation in disordered organic semiconductors,” Phys. Rev. Lett. 107, 066605 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.066605
17.
17. K. Harada, A. G. Werner, M. Pfeiffer, C. J. Bloom, C. M. Elliott, and K. Leo, “ Organic homojunction diodes with a high built-in potential: Interpretation of the current-voltage characteristics by a generalized einstein relation,” Phys. Rev. Lett. 94, 036601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.036601
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/14/10.1063/1.4932098
Loading
/content/aip/journal/apl/107/14/10.1063/1.4932098
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/14/10.1063/1.4932098
2015-10-05
2016-12-06

Abstract

The exciton transport is studied in high quality ZnO microwires using time resolved cathodoluminescence. Owing to the available picosecond temporal and nanometer spatial resolution, a direct estimation of the exciton average speed has been measured. When raising the temperature, a strong decrease of the effective exciton mobility (hopping speed of donor-bound excitons) has been observed in the absence of any remarkable change in the effective lifetime of excitons. Additionally, the exciton hopping speed was observed to be independent of the strain gradient value, revealing the hopping nature of exciton movement. These experimental results are in good agreement with the behavior predicted for impurity-bound excitons in our previously published theoretical model based on Monte-Carlo simulations, suggesting the hopping process as the main transport mechanism of impurity-bound excitons at low temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/14/1.4932098.html;jsessionid=sNLeMqmoXauhaqu4TP92jUUJ.x-aip-live-03?itemId=/content/aip/journal/apl/107/14/10.1063/1.4932098&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/14/10.1063/1.4932098&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/14/10.1063/1.4932098'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,