Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. He and P. Yang, “ Giant piezoresistance effect in silicon nanowires,” Nat. Nanotechnol. 1, 42 (2006).
2. M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “ Silicon device scaling to the sub-10-nm regime,” Science (New York) 306, 2057 (2004).
3. M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “ Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58, R13371 (1998).
4. G. Jacopin, L. Rigutti, S. Bellei, P. Lavenus, F. H. Julien, A. V. Davydov, D. Tsvetkov, K. A. Bertness, N. A. Sanford, J. B. Schlager, and M. Tchernycheva, “ Photoluminescence polarization in strained GaN/AlGaN core/shell nanowires,” Nanotechnology 23, 325701 (2012).
5. T. Zhu and J. Li, “ Ultra-strength materials,” Prog. Mater. Sci. 55, 710757 (2010).
6. C. P. Dietrich, M. Lange, F. J. Klüpfel, H. Von Wenckstern, R. Schmidt-Grund, and M. Grundmann, “ Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98, 031105 (2011).
7. X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J.-D. Ganière, J. Feng, W. Guo, Z. M. Liao, B. Deveaud, and D. Yu, “ Exciton drift in semiconductors under uniform strain gradients: Application to bent ZnO microwires,” ACS Nano 8, 3412 (2014).
8. G. Jacopin, M. Shahmohammadi, J.-D. Ganière, and B. Deveaud, “ Hopping process of bound excitons under an energy gradient,” Appl. Phys. Lett. 104, 042109 (2014).
9. A. Miller and E. Abrahams, “ Impurity conduction at low concentrations,” Phys. Rev. 120, 745 (1960).
10. X. W. Fu, Z. M. Liao, R. Liu, J. Xu, and D. Yu, “ Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires,” ACS Nano 7, 8891 (2013).
11. M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J.-D. Ganière, “ Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438, 479 (2005).
12. B. Lambert, F. Clerot, B. Deveaud, A. Chomette, G. Talalaeff, A. Regreny, and B. Sermage, “ Electron and hole transport properties in GaAs-AlGaAs superlattices,” J. Lumin. 44, 277 (1989).
13. J. Yoo, B. Chon, W. Tang, T. Joo, L. S. Dang, and G. C. Yi, “ Excitonic origin of enhanced luminescence quantum efficiency in MgZnO/ZnO coaxial nanowire heterostructures,” Appl. Phys. Lett. 100, 223103 (2012).
14. A. Einstein, “ Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322, 549 (1905).
15. L. Li, N. Lu, M. Liu, and H. Bässler, “ General Einstein relation model in disordered organic semiconductors under quasiequilibrium,” Phys. Rev. B 90, 214107 (2014).
16. G. A. Wetzelaer, L. J. A. Koster, and P. W. M. Blom, “ Validity of the einstein relation in disordered organic semiconductors,” Phys. Rev. Lett. 107, 066605 (2011).
17. K. Harada, A. G. Werner, M. Pfeiffer, C. J. Bloom, C. M. Elliott, and K. Leo, “ Organic homojunction diodes with a high built-in potential: Interpretation of the current-voltage characteristics by a generalized einstein relation,” Phys. Rev. Lett. 94, 036601 (2005).

Data & Media loading...


Article metrics loading...



The exciton transport is studied in high quality ZnO microwires using time resolved cathodoluminescence. Owing to the available picosecond temporal and nanometer spatial resolution, a direct estimation of the exciton average speed has been measured. When raising the temperature, a strong decrease of the effective exciton mobility (hopping speed of donor-bound excitons) has been observed in the absence of any remarkable change in the effective lifetime of excitons. Additionally, the exciton hopping speed was observed to be independent of the strain gradient value, revealing the hopping nature of exciton movement. These experimental results are in good agreement with the behavior predicted for impurity-bound excitons in our previously published theoretical model based on Monte-Carlo simulations, suggesting the hopping process as the main transport mechanism of impurity-bound excitons at low temperatures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd