Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485 (2002).
2. R. R. Schulz, B. Chesca, B. Goetz, C. W. Schneider, A. Schmehl, H. Bielefeldt, H. Hilgenkamp, J. Mannhart, and C. C. Tsuei, Appl. Phys. Lett. 76, 912914 (2000).
3. S. A. Cybart, S. M. Wu, S. M. Anton, I. Siddigi, J. Clarke, and R. C. Dynes, Appl. Phys. Lett. 93, 182502 (2008).
4. J. Du, J. Y. Lazar, S. K. H. Lam, E. E. Mitchell, and C. P. Foley, Supercond. Sci. Technol. 27, 095005 (2014).
5. E. Y. Cho, M. K. Ma, C. Huynh, K. Pratt, D. N. Paulson, V. N. Glyantsev, R. C. Dynes, and S. A. Cybart, Appl. Phys. Lett. 106, 252601 (2015).
6. C. H. Wu, Y. T. Chou, W. C. Kuo, J. H. Chen, L. M. Wang, J. C. Chen, K. L. Chen, U. C. Sou, H. C. Yang, and J. T. Jeng, Nanotechnology 19, 315304 (2008).
7. C. P. Foley and H. Hilgenkamp, Supercond. Sci. Technol. 22, 064001 (2009).
8. T. Schwarz, J. Nagel, R. Wolbing, M. Kemmler, R. Kleiner, and D. Koelle, ACS Nano 7, 844 (2013).
9. M. I. Faley, U. Poppe, R. E. Dunin-Borkowski, M. Schiek, F. Boers, H. Chocholacs, J. Dammers, E. Eich, N. J. Shah, A. B. Ermakov et al., IEEE Trans. Appl. Supercond. 23, 1600705 (2013).
10. F. Oisjoen, J. F. Schneidermann, G. A. Figueras, M. L. Chukharkin, A. Kalabukhov, A. Hedstrom, M. Elam, and D. Winkler, Appl. Phys. Lett. 100, 132601 (2012).
11. J. Schneiderman, J. Neurosci. Methods 222, 42 (2014).
12. M. Xie, J. Schneiderman, M. L. Chukharkin, A. Kalabukhov, S. Whitmarch, D. Lundqvist, and D. Winkler, IEEE Trans. Appl. Supercond. 25, 1601905 (2015).
13. R. P. Welty and J. M. Martinis, IEEE Trans. Magn. 27, 2924 (1991).
14. R. P. Welty and J. M. Martinis, IEEE Trans. Appl. Supercond. 3, 2605 (1993).
15. K. G. Stawiasz and M. B. Ketchen, IEEE Trans. Appl. Supercond. 3, 1808 (1993).
16. V. Foglietti, K. G. Stawiasz, M. B. Ketchen, and R. H. Koch, IEEE Trans. Appl. Supercond. 3, 3061 (1993).
17. K. Li and S. P. Hubbell, IEEE Trans. Appl. Supercond. 5, 3255 (1995).
18. K. Li and S. P. Hubbell, IEEE Trans. Appl. Supercond. 7, 3217 (1997).
19. K. Li, S. P. Hubbell, R. Cantor, and M. Teepe, IEEE Trans. Appl. Supercond. 9, 4420 (1999).
20. S. H. Wu, M. H. Hsu, K. L. Chen, J. C. Chen, J. T. Jeng, T. S. Lai, H. R. Horng, and H. C. Yang, Supercond. Sci. Technol. 19, S246 (2006).
21. S. G. Lee, Y. Huh, G. S. Park, I. S. Kim, Y. K. Park, and J. C. Park, IEEE Trans. Appl. Supercond. 7, 3347 (1997).
22. C. H. Wu, M. J. Chen, J. C. Chen, K. L. Chen, H. C. Yang, M. S. Hsu, T. S. Lai, Y. S. Tsai, H. E. Horng, J. H. Chen et al., Rev. Sci. Instrum. 77, 033901 (2006).
23. B. Chesca, D. Koelle, and R. Kleiner, “ SQUID theory,” in The SQUID Handbook, edited by J. Clarke and A. I. Braginski ( Wiley-VCH, Weinheim, 2004), p. 29.
24. D. Koelle, R. Kleiner, F. Ludwig, E. Dansker, and J. Clarke, Rev. Mod. Phys. 71, 631 (1999).
25. J. M. Jaycox and M. B. Ketchen, IEEE Trans. Magn. 17, 400 (1981).
26. Y. Tarutani, H. Hasegawa, T. Fukazawa, and K. Takagi, J. Appl. Phys. 83, 5000 (1998).
27. H. Burkhardt, O. Brugmann, A. Rauther, F. Schnell, and M. Shilling, IEEE Trans. Appl. Supercond. 9, 3153 (1999).

Data & Media loading...


Article metrics loading...



A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise S 1/2 decreases as 1/N1/2. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBaCuO. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for S 1/2 between (0.25 and 0.44) Φ/Hz1/2 for temperatures in the range (77–83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10–17) mV and (0.3–2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd