Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/16/10.1063/1.4933316
1.
1. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
http://dx.doi.org/10.1038/16393
2.
2. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
3.
3. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, Phys. Rev. Lett. 91, 157406 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.157406
4.
4. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
http://dx.doi.org/10.1021/cr050152i
5.
5. S. Chénais and S. Forget, Polym. Int. 61, 390 (2012).
http://dx.doi.org/10.1002/pi.3173
6.
6. M. D. McGehee and A. J. Heeger, Adv. Mater. 12, 1655 (2000).
http://dx.doi.org/10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2
7.
7. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Muellen, A. Gombert, and V. Wittwer, Adv. Mater. 10, 920 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199808)10:12<920::AID-ADMA920>3.0.CO;2-7
8.
8. H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. C. O'Brien, IEEE Photonics Technol. Lett. 26, 2035 (2014).
http://dx.doi.org/10.1109/LPT.2014.2345256
9.
9. S. Zhang, G. A. Turnbull, and I. D. W. Samuel, Adv. Opt. Mater. 2, 343 (2014).
http://dx.doi.org/10.1002/adom.201300441
10.
10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
http://dx.doi.org/10.1126/science.272.5258.85
11.
11. G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, Adv. Mater. 25, 2826 (2013).
http://dx.doi.org/10.1002/adma.201205096
12.
12. W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, and L. Xuan, Org. Electron. 13, 2307 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.07.004
13.
13. Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. MacKintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, P. J. Skabara, I. D. W. Samuel, N. Laurand, and M. D. Dawson, Org. Electron. 12, 62 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.09.021
14.
14. E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, Adv. Mater. 21, 799 (2009).
http://dx.doi.org/10.1002/adma.200802436
15.
15. M. G. Ramirez, P. G. Boj, V. Navarro-Fuster, I. Vragovic, J. M. Villalvilla, I. Alonso, V. Trabadelo, S. Merino, and M. A. Díaz-García, Opt. Express 19, 22443 (2011).
http://dx.doi.org/10.1364/OE.19.022443
16.
16. A. E. Vasdekis, M. J. Wilkins, J. W. Grate, R. T. Kelly, A. E. Konopka, S. S. Xantheas, and T.-M. Chang, Lab Chip 14, 2072 (2014).
http://dx.doi.org/10.1039/c4lc00226a
17.
17. J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 82, 4023 (2003).
http://dx.doi.org/10.1063/1.1579858
18.
18. G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 81, 415 (2002).
http://dx.doi.org/10.1063/1.1494473
19.
19. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, Chem. Phys. Lett. 241, 89 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00584-Q
20.
20. A. K. Bansal, A. Ruseckas, P. E. Shaw, and I. D. W. Samuel, J. Phys. Chem. C 114, 17864 (2010).
http://dx.doi.org/10.1021/jp105545r
21.
21. T. Wood, J. Le Rouzo, F. Flory, P. Coudray, V. R. Mastelaro, P. Pelissari, and S. Zilio, Opt. Eng. 52, 094104 (2013).
http://dx.doi.org/10.1117/1.OE.52.9.094104
22.
22. G. F. Barlow, K. A. Shore, G. A. Turnbull, and I. D. W. Samuel, J. Opt. Soc. Am. B 21, 2142 (2004).
http://dx.doi.org/10.1364/JOSAB.21.002142
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/16/10.1063/1.4933316
Loading
/content/aip/journal/apl/107/16/10.1063/1.4933316
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/16/10.1063/1.4933316
2015-10-19
2016-09-27

Abstract

Solvent immersion imprint lithography (SIIL) was used to directly nanostructure conjugated polymer films. The technique was used to create light-emitting diffractive optical elements and organic semiconductor lasers. Gratings with lateral features as small as 70 nm and depths of ∼25 nm were achieved in poly(9,9-dioctylfluorenyl-2,7-diyl). The angular emission from the patterned films was studied, comparing measurement to theoretical predictions. Organic distributed feedback lasers fabricated with SIIL exhibited thresholds for lasing of ∼40 kW/cm2, similar to those made with established nanoimprint processes. The results show that SIIL is a quick, convenient and practical technique for nanopatterning of polymer photonic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/16/1.4933316.html;jsessionid=oCb4VwZOnDw2UiYCXOKk2-c-.x-aip-live-06?itemId=/content/aip/journal/apl/107/16/10.1063/1.4933316&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/16/10.1063/1.4933316&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/16/10.1063/1.4933316'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,