Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/16/10.1063/1.4934218
1.
1. J. R. Arthur, “ Vapor pressures and phase equilibria in the GaAs system,” J. Phys. Chem. Solids 28, 22572267 (1967).
http://dx.doi.org/10.1016/0022-3697(67)90251-X
2.
2. C. T. Foxon, J. A. Harvey, and B. A. Joyce, “ The evaporation of GaAs under equilibrium and non-equilibrium conditions using a modulated beam technique,” J. Phys. Chem. Solids 34, 16931701 (1973).
http://dx.doi.org/10.1016/S0022-3697(73)80135-0
3.
3. Z. Y. Zhou, C. X. Zheng, W. X. Tang, D. E. Jesson, and J. Tersoff, “ Congruent evaporation temperature of GaAs(001) controlled by As flux,” Appl. Phys. Lett. 97, 121912 (2010).
http://dx.doi.org/10.1063/1.3491552
4.
4. B. Goldstein, D. J. Szostak, and V. S. Ban, “ Langmuir evaporation from the (100), (111A), and (111B) faces of GaAs,” Surf. Sci. 57, 733740 (1976).
http://dx.doi.org/10.1016/0039-6028(76)90358-7
5.
5. J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy ( Academic, San Diego, 1993), p. 733.
6.
6. C. Chatillon and D. Chatain, “ Congruent vaporization of GaAs(s) and stability of Ga(l) droplets at the GaAs(s) surface,” J. Cryst. Growth 151, 91101 (1995).
http://dx.doi.org/10.1016/0022-0248(95)00044-5
7.
7. M. Zinke-Allmang, L. Feldman, and W. van Saarloos, “ Experimental study of self-similarity in the coalescence growth regime,” Phys. Rev. Lett. 68, 2358 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2358
8.
8. T. D. Lowes and M. Zinke-Allmang, “ Microscopic study of cluster formation in the Ga on GaAs(001) system,” J. Appl. Phys. 73, 49374941 (1993).
http://dx.doi.org/10.1063/1.353812
9.
9. J. Tersoff, D. E. Jesson, and W. X. Tang, “ Running droplets of gallium from evaporation of gallium arsenide,” Science 324, 236238 (2009).
http://dx.doi.org/10.1126/science.1169546
10.
10.See, for example, T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, and N. Koguchi, “ Self-assembly of concentric quantum double rings,” Nano Lett. 5, 425 (2005);
http://dx.doi.org/10.1021/nl048192+
10. C. Somaschini, S. Bietti, N. Koguchi, and S. Sanguinetti, “ Fabrication of multiple concentric nanoring structures,” Nano Lett. 9, 34193424 (2009);
http://dx.doi.org/10.1021/nl901493f
10. J. H. Lee, Z. M. Wang, Z. Y. AbuWaar, and G. J. Salamo, “ Design of nanostructure complexes by droplet epitaxy,” Cryst. Growth Des. 9, 715721 (2009);
http://dx.doi.org/10.1021/cg701142d
10. Z. Y. Zhou, C. X. Zheng, W. X. Tang, J. Tersoff, and D. E. Jesson, “ Origin of quantum ring formation during droplet epitaxy,” Phys. Rev. Lett. 111, 036102 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.036102
11.
11. J. Tersoff, D. E. Jesson, and W. X. Tang, “ Decomposition controlled by surface morphology during Langmuir evaporation of GaAs,” Phys. Rev. Lett. 105, 035702 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.035702
12.
12. A. J. SpringThorpe, S. J. Ingrey, B. Emmerstorfer, P. Mandeville, and W. T. Moore, “ Measurement of GaAs surface oxide desorption temperatures,” Appl. Phys. Lett. 50, 7779 (1987).
http://dx.doi.org/10.1063/1.97824
13.
13. M. Volmer and A. Weber, “ Keimbildung in Übersättigten Gebilden,” Z. Phys. Chem. 119, 277 (1926).
14.
14. Ch. Heyn, A. Stemmann, and W. Hansen, “ Dynamics of self–assembled droplet etching,” Appl. Phys. Lett. 95, 173110 (2009).
http://dx.doi.org/10.1063/1.3254216
15.
15. Ch. Heyn, Th. Bartsch, S. Sanguinetti, D. Jesson, and W. Hansen, “ Dynamics of mass transport during nanohole drilling by local droplet etching,” Nanoscale Res. Lett. 10, 67 (2015).
http://dx.doi.org/10.1186/s11671-015-0779-5
16.
16. C. X. Zheng, W. X. Tang, and D. E. Jesson, “ Asymmetric coalescence of reactively wetting droplets,” Appl. Phys. Lett. 100, 071903 (2012).
http://dx.doi.org/10.1063/1.3684616
17.
17. Z. M. Wang, B. L. Liang, K. A. Sablon, and G. J. Salamo, “ Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100),” Appl. Phys. Lett. 90, 113120 (2007).
http://dx.doi.org/10.1063/1.2713745
18.
18. Ch. Heyn, “ Kinetic model of local droplet etching,” Phys. Rev. B 83, 165302 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.165302
19.
19. Th. Bartsch, M. Schmidt, Ch. Heyn, and W. Hansen, “ Thermal conductance of ballistic point contacts,” Phys. Rev. Lett. 108, 075901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.075901
20.
20. P. Alonso-González, J. Martín-Sánchez, Y. González, B. Alén, D. Fuster, and L. González, “ Formation of lateral low density In(Ga)As quantum dot pairs in GaAs nanoholes,” Cryst. Growth Des. 9, 25252528 (2009).
http://dx.doi.org/10.1021/cg900065v
21.
21. Ch. Heyn, A. Stemmann, T. Köppen, C. Strelow, T. Kipp, M. Grave, S. Mendach, and W. Hansen, “ Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes,” Appl. Phys. Lett. 94, 183113 (2009).
http://dx.doi.org/10.1063/1.3133338
22.
22. D. Sonnenberg, A. Küster, A. Graf, C. Heyn, and W. Hansen, “ Vertically stacked quantum dot pairs fabricated by nanohole filling,” Nanotechnology 25, 215602 (2014).
http://dx.doi.org/10.1088/0957-4484/25/21/215602
23.
23. Ch. Heyn, S. Schnüll, D. E. Jesson, and W. Hansen, “ Thermally controlled widening of droplet etched nanoholes,” Nanoscale Res. Lett. 9, 285 (2014).
http://dx.doi.org/10.1186/1556-276X-9-285
24.
24. Ch. Heyn, A. Stemmann, A. Schramm, H. Welsch, W. Hansen, and Á. Nemcsics, “ Regimes of GaAs quantum dot self-assembly by droplet epitaxy,” Phys. Rev. B 76, 075317 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075317
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/16/10.1063/1.4934218
Loading
/content/aip/journal/apl/107/16/10.1063/1.4934218
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/16/10.1063/1.4934218
2015-10-20
2016-09-27

Abstract

The congruent evaporation temperature of GaAs (001) is critical for many technological processes and is fundamental to the control and stability of Ga droplets for quantum structure fabrication. We apply the technique of local droplet etching (LDE) to measure for technologically important molecular beam epitaxy (MBE) grown GaAs (001). Below , Ga droplets deposited on the surface shrink and form nanoholes via LDE and thermal widening. Above , droplets grow by capturing excess Ga. From the transition between both regimes, we determine  = 680 ± 10 °C. Additionally, we find that the nanohole/droplet densities follow an Arrhenius-type temperature dependence with an activation energy of 1.31 eV. The method probes the stability of pre-existing droplets formed by deposition and so avoids the complication of nucleation barriers and readily allows the measurement of for technologically important planar GaAs surfaces in any standard MBE system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/16/1.4934218.html;jsessionid=C-OnPwhGB0L1qmf8aRHf5TT1.x-aip-live-06?itemId=/content/aip/journal/apl/107/16/10.1063/1.4934218&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/16/10.1063/1.4934218&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/16/10.1063/1.4934218'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,