Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, Proc. Natl. Acad. Sci. U.S.A. 98, 4835 (2001).
2. Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, and Z. H. Lu, Nat. Photonics 5, 753 (2011).
3. S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nat. Mater. 9, 859 (2010).
4. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A. 101, 9966 (2004).
5. D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, NPG Asia Mater. 4, e15 (2012).
6. A. Kumar and C. Zhou, ACS Nano 4, 11 (2010).
7. K. Ellmer, Nat. Photonics 6, 809 (2012).
8. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, Nat. Photonics 6, 105 (2012).
9. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science 305, 1273 (2004).
10. K. Fehse, K. Walzer, K. Leo, W. Lövenich, and A. Elschner, Adv. Mater. 19, 441 (2007).
11. W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, Adv. Mater. 25, 4006 (2013).
12. L. Li, J. Liang, S.-Y. Chou, X. Zhu, X. Niu, Z. Yu, and Q. Pei, Sci. Rep. 4, 4307 (2014).
13. J. Meyer, P. R. Kidambi, B. C. Bayer, C. Weijtens, A. Kuhn, A. Centeno, A. Pesquera, A. Zurutuza, J. Robertson, and S. Hofmann, Sci. Rep. 4, 5380 (2014).
14. S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, Opt. Express 19, A1250 (2011).
15. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Luüssem, and K. Leo, Appl. Phys. Lett. 97, 253308 (2010).
16. M. Thomschke, R. Nitsche, M. Furno, and K. Leo, Appl. Phys. Lett. 94, 083303 (2009).
17. S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, Rev. Mod. Phys. 85, 1245 (2013).
18. M. C. Gather and S. Reineke, J. Photonics Energy 5, 057607 (2015).
19. T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, Adv. Opt. Mater. 1, 921 (2013).
20. T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, Adv. Opt. Mater. 1, 707 (2013).
21. S. Schubert, J. Meiss, L. Müller-Meskamp, and K. Leo, Adv. Energy Mater. 3, 438 (2013).
22. G. Schwartz, K. Fehse, M. Pfeiffer, K. Walzer, and K. Leo, Appl. Phys. Lett. 89, 083509 (2006).
23.See supplementary material at for profilometer scans, spectrally resolved angular dependent emission, simulated CIE shifts, and device lifetime data.[Supplementary Material]
24. R. Meerheim, R. Nitsche, and K. Leo, Appl. Phys. Lett. 93, 043310 (2008).
25. P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, Org. Electron. 11, 1676 (2010).
26. S. Hofmann, T. Schwab, F. Fries, M. Fröbel, S. Schubert, L. Müller-Meskamp, K. Leo, M. C. Gather, and S. Reineke, in Conference on Solid-State and Organic Lighting, 2014.

Data & Media loading...


Article metrics loading...



We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd