Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
2. I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, Nat. Photonics 3, 546 (2009).
3. M. Ichikawa, R. Hibino, M. Inoue, T. Haritani, S. Hotta, K. Araki, T. Koyama, and Y. Taniguchi, Adv. Mater. 17, 2073 (2005).
4. T. Yamao, K. Yamamoto, Y. Taniguchi, T. Miki, and S. Hotta, J. Appl. Phys. 103, 093115 (2008).
5. H. Mizuno, I. Ohnishi, H. Yanagi, F. Sasaki, and S. Hotta, Adv. Mater. 24, 2404 (2012).
6. H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 86, 083502 (2005).
7. T. Takenobu, S. Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, and Y. Iwasa, Phys. Rev. Lett. 100, 066601 (2008).
8. X. Liu, H. Liu, C. Song, Y. Liao, and M. Tian, Opt. Lett. 34, 503 (2009).
9. T. Yamao, K. Terasaki, Y. Shimizu, and S. Hotta, J. Nanosci. Nanotechnol. 10, 1017 (2010).
10. M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Friend, Phys. Rev. B 60, 14422 (1999).
11. H. Nakanotani, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 86, 213506 (2005).
12. A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, Phys. Rev. A 53, 4250 (1996).
13. D. Bajoni, J. Phys. D: Appl. Phys. 45, 313001 (2012).
14. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature 443, 409 (2006).
15. G. Nardin, K. G. Lagoudakis, N. Wouters, M. Richard, A. Bass, R. Andé, Le Si Dang, B. Pietka, and B. Deveaud-Plédran, Phys. Rev. Lett. 103, 256402 (2009).
16. S. Cristopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, and J. J. Baumberg, Phys. Rev. Lett. 98, 126405 (2007).
17. F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, Phys. Rev. Lett. 110, 196406 (2013).
18. K. S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, Appl. Phys. Lett. 102, 101113 (2013).
19. T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, W.-F. Hsieh, and H. Deng, Opt. Express 20, 5530 (2012).
20. S. Kéna-Cohen and S. R. Forrest, Nat. Photonics 4, 371 (2010).
21. K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, Nat. Mater. 13, 271 (2014).
22. J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Nat. Mater. 13, 247 (2014).
23. K. Yamashita, T. Nakahara, T. Hayakawa, Y. Sakurai, T. Yamao, H. Yanagi, and S. Hotta, Appl. Phys. Lett. 104, 253301 (2014).
24. H. Mizuno, T. Maeda, H. Yanagi, H. Katsuki, M. Aresti, F. Quochi, M. Saba, A. Mura, G. Bongiovanni, F. Sasaki, and S. Hotta, Adv. Opt. Matter 2, 529 (2014).
25. Y. Wang, T. Hu, W. Xie, L. Sun, L. Zhang, J. Wang, J. Gu, L. Wu, J. Wang, X. Shen, and Z. Chen, Phys. Rev. B 91, 121301(R) (2015).
26. H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).
27. F. Sasaki, S. Kobayashi, S. Haraichi, H. Yanagi, S. Hotta, M. Ichikawa, and Y. Taniguchi, Jpn. J. Appl. Phys., Part 2 45, L1206 (2006).
28. H. Yanagi, Y. Marutani, F. Sasaki, Y. Makino, T. Yamao, and S. Hotta, Appl. Phys. Express 4, 062601 (2011).

Data & Media loading...


Article metrics loading...



Vertical-cavity organic lasers are fabricated with melt-grown crystals of a cyano-substituted thiophene-phenylene co-oligomer. Due to lying molecular orientation, surface-emitting lasing is achieved even in the half-cavity crystal grown on a distributed Bragg reflector (DBR) under optical pumping at room temperature. Anticrossing splits in angle-resolved photoluminescence spectra suggest the formation of exciton-polaritons between the cavity photons and the confined Frenkel excitons. By constructing the full-cavity structure sandwiched between the top and bottom DBRs, the lasing threshold is reduced to one order, which is as low as that of the half cavity. Around the threshold, the time profile of the full-cavity emission is collapsed to a pulsed shape accompanied by a finite turn-on delay. We discuss these observed characteristics in terms of a polariton contribution to the conventional photon lasing.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd