Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. P. Rojas, G. A. Torres Sevilla, M. T. Ghoneim, S. B. Inayat, S. M. Ahmed, A. M. Hussain, and M. M. Hussain, ACS Nano 8, 1468 (2014).
2. J. P. Rojas, G. Torres Sevilla, and M. M. Hussain, Appl. Phys. Lett. 102, 064102 (2013).
3. A. Diab, G. A. Torres Sevilla, M. T. Ghoneim, and M. M. Hussain, Appl. Phys. Lett. 105, 133509 (2014).
4. J. P. Rojas, G. A. T. Sevilla, and M. M. Hussain, Sci. Rep. 3, 2609 (2013).
5. J. P. Rojas, G. A. Torres Sevilla, N. Alfaraj, M. T. Ghoneim, A. T. Kutbee, A. Sridharan, and M. M. Hussain, ACS Nano 9, 5255 (2015).
6. G.-T. Hwang, D. Im, S. E. Lee, J. Lee, M. Koo, S. Y. Park, S. Kim, K. Yang, S. J. Kim, K. Lee, and K. J. Lee, ACS Nano 7, 4545 (2013).
7. H. S. Lee, J. Chung, G.-T. Hwang, C. K. Jeong, Y. Jung, J.-H. Kwak, H. Kang, M. Byun, W. D. Kim, S. Hur et al., Adv. Funct. Mater. 24, 6914 (2014).
8. H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, Nat. Nanotechnol. 8, 421 (2013).
9. G. A. T. Sevilla, S. B. Inayat, J. P. Rojas, A. M. Hussain, and M. M. Hussain, Small 9, 3916 (2013).
10. G. A. T. Sevilla, J. P. Rojas, H. M. Fahad, A. M. Hussain, R. Ghanem, C. E. Smith, and M. M. Hussain, Adv. Mater. 26, 2794 (2014).
11. M. T. Ghoneim, A. Kutbee, F. Ghodsi Nasseri, G. Bersuker, and M. M. Hussain, Appl. Phys. Lett. 104, 234104 (2014).
12. M. T. Ghoneim, M. A. Zidan, M. Y. Alnassar, A. N. Hanna, J. Kosel, K. N. Salama, and M. M. Hussain, Adv. Electron. Mater. 1(6) (2015).
13. M. T. Ghoneim and M. M. Hussain, Appl. Phys. Lett. 107, 052904 (2015).
14. M. T. Ghoneim and M. M. Hussain, Electronics 4, 424479 (2015).
15. J. M. Nassar, A. M. Hussain, J. P. Rojas, and M. M. Hussain, Phys. Status Solidi RRL 8, 794 (2014).
16. M. T. Ghoneim, N. Alfaraj, G. A. Torres Sevilla, H. M. Fahad, and M. M. Hussain, in 73rd Annual Device Research Conference (DRC), Columbus, OH (2015), pp. 9596.
17. M. T. Ghoneim, N. Alfaraj, G. A. Torres Sevilla, A. Kutbee, and M. M. Hussain, in 15th International Conference on Nanotechnology, Rome, Italy, 2015.
18. J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).
19. J. Wu, Z. J. Liu, J. Song, Y. Huang, K.-C. Hwang, Y. W. Zhang, and J. A. Rogers, Appl. Phys. Lett. 99, 061911 (2011).
20. T. Sekitani and T. Someya, Adv. Mater. 22, 2228 (2010).
21. J. Song, Y. Huang, J. Xiao, S. Wang, K. C. Hwang, H. C. Ko, D.-H. Kim, M. P. Stoykovich, and J. A. Rogers, J. Appl. Phys. 105, 123516 (2009).
22. H. Fu, S. Xu, R. Xu, J. Jiang, Y. Zhang, J. A. Rogers, and Y. Huang, Appl. Phys. Lett. 106, 091902 (2015).
23. C. K. Jeong, J. Lee, S. Han, J. Ryu, G.-T. Hwang, D. Y. Park, J. H. Park, S. S. Lee, M. Byun, S. H. Ko, and K. J. Lee, Adv. Mater. 27, 2866 (2015).
24. J. S. Hwang, J. Y. Cho, S. Y. Park, Y. J. Yoo, P. S. Yoo, B. W. Lee, and Y. P. Lee, Appl. Phys. Lett. 106, 062902 (2015).
25. R. Tang, H. Huang, H. Tu, H. Liang, M. Liang, Z. Song, Y. Xu, H. Jiang, and H. Yu, Appl. Phys. Lett. 104, 083501 (2014).
26. Z. Song, X. Wang, C. Lv, Y. An, M. Liang, T. Ma, D. He, Y.-J. Zheng, S.-Q. Huang, H. Yu et al., Sci. Rep. 5, 10988 (2013).
27. S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, Proc. IEEE 93, 1459 (2005).
28. J. P. Rojas, A. Arevalo, I. G. Foulds, and M. M. Hussain, Appl. Phys. Lett. 105, 154101 (2014).
29. A. M. Hussain, E. B. Lizardo, G. A. Torres Sevilla, J. M. Nassar, and M. M. Hussain, Adv. Healthcare Mater. 4, 665 (2015).
30. R. Reuss, B. Chalamala, A. Moussessian, M. G. Kane, A. Kumar, D. Zhang, J. Rogers, M. Hatalis, D. Temple, G. Moddel, B. Eliasson, M. Estes, J. Kunze, E. Handy, E. Harmon, D. Salzman, J. Woodall, M. Alam, J. Y. Murthy, S. Jacobsen, M. Olivier, D. Markus, P. Campbell, and E. Snow, Proc. IEEE 93, 1239 (2005).
31. N. Alfaraj, M.S. thesis, King Abdullah University of Science and Technology, 2015.
32. S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl, D.-H. Kim, J. Wu, J. Yoon, C.-J. Yu, Z. Liu, Y. Huang, K.-c. Hwang, P. Ferreira, X. Li, K. Choquette, and J. A. Rogers, Science 325, 977 (2009).
33. L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, and T. N. Jackson, Appl. Phys. Lett. 88, 083502 (2006).
34. P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, and J. A. Rogers, Appl. Phys. Lett. 78, 3592 (2001).
35. X. Hu, P. Krull, B. de Graff, K. Dowling, J. A. Rogers, and W. J. Arora, Adv. Mater. 23, 2933 (2011).
36. B. Geffroy, P. Le Roy, and C. Prat, Polym. Int. 55, 572 (2006).
37. S. R. Forrest, Nature 428, 911 (2004).
38. J. He, R. Nuzzo, and J. Rogers, Proc. IEEE 103, 619 (2015).
39. J. Sun, B. Zhang, and H. E. Katz, Adv. Funct. Mater. 21, 29 (2011).
40. T.-i. Kim, S. Hyun Lee, Y. Li, Y. Shi, G. Shin, S. Dan Lee, Y. Huang, J. A. Rogers, and J. Su Yu, Appl. Phys. Lett. 104, 051901 (2014).
41. H. Jang, W. Lee, S. M. Won, S. Y. Ryu, D. Lee, J. B. Koo, S.-D. Ahn, C.-W. Yang, M.-H. Jo, J. H. Cho, J. A. Rogers, and J.-H. Ahn, Nano Lett. 13, 5600 (2013).
42. J. Franklin, S. Myers, B. Rappoport, S. Lynch, J. Ternus, and J. Wodrich, “ Flexible electronic devices,” U.S. patent 8,929,085 (2015).
43. I. Kim, “ Flexible electronic device,” U.S. patent application 14/272,715 (2015).
44. Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, Appl. Phys. Lett. 74, 1177 (1999).
45. D. K. Schroder, Semiconductor Material and Device Characterization ( John Wiley & Sons, New York, 2006), pp. 223224.
46. D. K. Schroder, Semiconductor Material and Device Characterization ( John Wiley & Sons, New York, 2006), pp. 489490.
47. J. R. Davis, ASM Specialty Handbook: Cast Irons ( ASM International, 1996), p. 101.
48. J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook ( CRC Press, 2000), p. 539.
49. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices ( John Wiley & Sons, New York, 2006), p. 315.

Data & Media loading...


Article metrics loading...



Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 m) flexible silicon-based -channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd