Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
2. A. Schnyder, S. Ryu, A. Furusaki, and A. Ludwig, Phys. Rev. B 78, 195125 (2008).
3. L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
4. X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Phys. Rev. Lett. 102, 187001 (2009).
5. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Rev. Mod. Phys. 80, 1083 (2008).
6. N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
7. A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
8. Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K. Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012).
9. M. X. Wang, C. L. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Shen, X. C. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, Science 336, 52 (2012).
10. J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).
11. M. Sato and S. Fujimoto, Phys. Rev. Lett. 105, 217001 (2010).
12. Y. M. Lu and Z. Q. Wang, Phys. Rev. Lett. 110, 096403 (2013).
13. K. Kirshenbaum, P. S. Syers, A. P. Hope, N. P. Butch, J. R. Jeffries, S. T. Weir, J. J. Hamlin, M. B. Maple, Y. K. Vohra, and J. Paglione, Phys. Rev. Lett. 111, 087001 (2013).
14. J. Zhu, J. L. Zhang, P. P. Kong, S. J. Zhang, X. H. Yu, J. L. Zhu, Q. Q. Liu, X. Li, R. C. Yu, R. Ahuja, W. G. Yang, G. Y. Shen, H. K. Mao, H. M. Weng, X. Dai, Z. Fang, Y. S. Zhao, and C. Q. Jin, Sci. Rep. 3, 2016 (2013).
15. J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q. Liu, S. M. Feng, X. C. Wang, R. C. Yu, L. Z. Cao, L. Wang, W. G. Yang, H. Z. Liu, W. Y. Zhao, S. C. Zhang, X. Dai, Z. Fang, and C. Q. Jin, Proc. Natl. Acad. Sci. 108, 24 (2011).
16. M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, X. L. Wang, U. Zeitler, W. G. van der Wiel, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, Nat. Mater. 11, 417 (2012).
17. J. P. Xu, C. H. Liu, M. X. Wang, J. F. Ge, Z. L. Liu, X. Yang, Y. Chen, Y. Liu, Z. A. Xu, C. L. Gao, D. Qian, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 112, 217001 (2014).
18. J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. H. Liu, Z. A. Xu, D. D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Phys. Rev. Lett. 114, 017001 (2015).
19. Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010).
20. M. Kriener, K. Segawa, Z. Ren, S. Sasaki, and Y. Ando, Phys. Rev. Lett. 106, 127004 (2011).
21. S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Phys. Rev. Lett. 107, 217001 (2011).
22. N. Levy, T. Zhang, J. Ha, F. Sharifi, A. A. Talin, Y. Kuk, and J. A. Stroscio, Phys. Rev. Lett. 110, 117001 (2013).
23. Z. H. Liu, X. Yao, J. Shao, M. Zuo, L. Pi, S. Tan, C. Zhang, and Y. H. Zhang, J. Am. Chem. Soc. 137, 10512 (2015).
24. Shruti, V. K. Maurya, P. Neha, P. Srivastava, and S. Patnaik, e-print arXiv:1505.05394.
25. L. P. Caywood, Jr. and G. R. Miller, Phys. Rev. B 2, 3209 (1970).
26. L. A. Wray, S. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Nat. Phys. 6, 855 (2010).
27. L. Fu and E. Berg, Phys. Rev. Lett. 105, 097001 (2010).
28. J. C. Y. Teo and C. L. Kane, Phys. Rev. Lett. 104, 046401 (2010).
29. P. Hosur, P. Ghaemi, R. S. K. Mong, and A. Vishwanath, Phys. Rev. Lett. 107, 097001 (2011).
30. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009).

Data & Media loading...


Article metrics loading...



Using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the atomic and low energy electronic structure of the Sr-doped superconducting topological insulators (SrBiSe) was studied. Scanning tunneling microscopy shows that most of the Sr atoms are not in the van der Waals gap. After Sr doping, the Fermi level was found to move further upwards when compared with the parent compound BiSe, which is consistent with the low carrier density in this system. The topological surface state was clearly observed, and the position of the Dirac point was determined in all doped samples. The surface state is well separated from the bulk conduction bands in the momentum space. The persistence of separated topological surface state combined with small Fermi energy makes this superconducting material a very promising candidate for the time reversal invariant topological superconductor.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd