Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
2. E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 115449 (2008).
3. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, Nano Lett. 11, 2396 (2011).
4. Y. Wang, B.-C. Huang, M. Zhang, C. Miao, Y.-H. Xie, and J. C. S. Woo, Symp. VLSI Technol., Dig. Tech. Pap. 1, 116 (2011).
5. Y. Liang, X. Liang, Z. Zhang, W. Li, X. Huo, and L. Peng, Nanoscale 7, 10954 (2015).
6. B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, Appl. Phys. Lett. 97, 123105 (2010).
7. H. Wang, T. Taychatanapat, A. Hsu, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and T. Palacios, IEEE Electron Device Lett. 32, 1209 (2011).
8. Z. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer, Y. Hu, M. Ruan, J. Hankinson, J. Kunc, J. D. Cressler, C. Berger, and W. A. de Heer, Nano Lett. 13, 942 (2013).
9. M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, IEEE Electron Device Lett. 28, 282 (2007).
10. S. Adam, E. H. Hwang, V. M. Galitski, and S. D. Sarma, Proc. Natl. Acad. Sci. U. S. A. 104, 18392 (2007).
11. Y. Zhang, V. W. Brar, C. Girit, A. Zett, and M. F. Crommie, Nat. Phys. 5, 722 (2009).
12. T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Chem. Phys. Lett. 476, 125 (2009).
13. M. J. Hollander, M. LaBella, Z. R. Hughes, M. Zhu, K. A. Trumbull, R. Cavalero, D. W. Snyder, X. Wang, E. Hwang, S. Datta, and J. A. Robinson, Nano Lett. 11, 3601 (2011).
14. Z. Zhang, H. Xu, H. Zhong, and L.-M. Peng, Appl. Phys. Lett. 101, 213103 (2012).
15. B. N. Szafranek, G. Fiori, D. Schall, D. Neumaier, and H. Kurz, Nano Lett. 12, 1324 (2012).
16. Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2009).
17. D. Berdebes, T. Low, Y. Sui, J. Appenzeller, and M. S. Lundstrom, IEEE Trans. Electron Devices 58, 3925 (2011).
18. N. Petrone, I. Meric, J. Hone, and K. L. Shepard, Nano Lett. 13, 121 (2013).
19. X. Hong, A. Posadas, K. Zou, C. H. Ahn, and J. Zhu, Phys. Rev. Lett. 102, 136808 (2009).
20. J. Ding, L.-W. Wen, H.-D. Li, X.-B. Kang, and J.-M. Zhang, Europhys. Lett. 104, 17009 (2013).
21. M. Tanzid, M. A. Andersson, J. Sun, and J. Stake, Appl. Phys. Lett. 104, 013502 (2014).
22. C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Appl. Phys. Lett. 91, 233108 (2007).
23. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
24. T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Phys. Rev. B 79, 205433 (2009).
25. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS Nano 2, 2301 (2008).
26. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nat. Mater. 6, 198201 (2007).
27. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009).
28. M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, Thin Solid Films 413, 186 (2002).
29. J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat. Phys. 4, 377 (2008).
30. O. Habibpour, J. Vukusic, and J. Stake, IEEE Trans. Electron Devices 59, 968 (2012).
31. A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, Nano Lett. 14, 5834 (2014).
32. A. Vorobiev, S. Gevorgian, M. Löffler, and E. Olsson, J. Appl. Phys. 110, 054102 (2011).
33. A. K. Jonscher, Universal Relaxation Law: Dielectric Relaxation in Solids ( Chelsea Dielectric Press, London, 1996).
34. A. Vorobiev, P. Rundqvist, and K. Khamchane, J. Appl. Phys. 96, 4642 (2004).
35. D. Kuylenstierna, M. Norling, A. Vorobiev, K. Reimannt, D. Lederer, J.-P. Raskin, and S. Gevorgian, in IEEE MTT-S International Microwave Symposium (2007), p. 671.
36. C. A. Balanis, Advanced Engineering Electromagnetics ( John Wiley and Sons, New York, 1989).
37. J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, and L. Jensen, IEEE Trans. Microwave Theory Tech. 54, 3995 (2006).
38. D. Liu, S. J. Clark, and J. Robertson, Appl. Phys. Lett. 96, 032905 (2010).
39. X. Aupi, J. Breeze, N. Ljepojevic, L. J. Dunne, N. Malde, A.-K. Axelsson, and N. McN. Alford, J. Appl. Phys. 95, 2639 (2004).

Data & Media loading...


Article metrics loading...



Effect of LiNbO ferroelectric substrate on the carrier mobility in top gated graphene field-effect transistors (G-FETs) is demonstrated. It is shown that, at the same residual concentration of the charge carriers, the mobility in the G-FETs on the LiNbO substrate is higher than that on the SiO/Si substrate. The effect is associated with reduction of Coulomb scattering via screening the charged impurity field by the field induced in the ferroelectric substrate, but significant only for mobilities below 1000 cm2/V s. Raman spectra analysis and correlations established between mobility and microwave loss tangent of the AlO gate dielectric indicate that the charged impurities are located predominantly at the gate dielectric and/or at the gate dielectric/graphene interface and are likely associated with oxygen vacancies.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd