Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/17/10.1063/1.4934750
1.
1. A. Erturk and D. J. Inman, Piezoelectric energy harvesting ( John Wiley & Sons, 2011).
2.
2. K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, Smart Mater. Struct. 17, 043001 (2008).
http://dx.doi.org/10.1088/0964-1726/17/4/043001
3.
3. A. I. Kingon and S. Srinivasan, Nat. Mater. 4, 233237 (2005).
http://dx.doi.org/10.1038/nmat1334
4.
4. S. Xu, B. J. Hansen, and Z. L. Wang, Nat. Commun. 1, 93 (2010).
http://dx.doi.org/10.1038/ncomms1098
5.
5. T. D. Nguyen, N. Deshmukh, J. M. Nagarah, T. Kramer, P. K. Purohit, M. J. Berry, and M. C. McAlpine, Nat. Nanotechnol. 7, 587593 (2012).
http://dx.doi.org/10.1038/nnano.2012.112
6.
6. S. R. Anton and H. A. Sodano, Smart Mater. Struct. 16, R1 (2007).
http://dx.doi.org/10.1088/0964-1726/16/3/R01
7.
7. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. Lett. 79, 3958 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3958
8.
8. I. L. Guy, S. Muensit, and E. M. Goldys, Appl. Phys. Lett. 75, 41334135 (1999).
http://dx.doi.org/10.1063/1.125560
9.
9. Z. L. Wang, Adv. Mater. 24, 46324646 (2012).
http://dx.doi.org/10.1002/adma.201104365
10.
10. Z. L. Wang and J. Song, Science 312, 242246 (2006).
http://dx.doi.org/10.1126/science.1124005
11.
11. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, Nat. Photonics 7, 752758 (2013).
http://dx.doi.org/10.1038/nphoton.2013.191
12.
12. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, Nano Lett. 6, 27682772 (2006).
http://dx.doi.org/10.1021/nl061802g
13.
13. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Nat. Nanotechnol. 5, 366373 (2010).
http://dx.doi.org/10.1038/nnano.2010.46
14.
14. K. A. N. Duerloo, M. T. Ong, and E. J. Reed, J. Phys. Chem. Lett. 3, 28712876 (2012).
http://dx.doi.org/10.1021/jz3012436
15.
15. K. H. Michel and B. Verberck, Phys. Rev. B 80, 224301 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.224301
16.
16. W. Li and J. Li, “ Piezoelectricity in two-dimensional group III monochalcogenides,” preprint arXiv:150307379 (2015).
17.
17. Z. Chang, W. Yan, J. Shang, and J. Z. Liu, Appl. Phys. Lett. 105, 023103 (2014).
http://dx.doi.org/10.1063/1.4890385
18.
18. M. N. Blonsky, H. L. Zhuang, A. K. Singh, and R. G. Hennig, “Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials,” ACS Nano (to be published).
http://dx.doi.org/10.1021/acsnano.5b03394
19.
19. H. L. Zhuang and R. G. Hennig, Chem. Mater. 25, 32323238 (2013).
http://dx.doi.org/10.1021/cm401661x
20.
20. M. T. Ong and E. J. Reed, ACS Nano 6, 13871394 (2012).
http://dx.doi.org/10.1021/nn204198g
21.
21. H. L. Zhuang, M. D. Johannes, M. N. Blonsky, and R. G. Hennig, Appl. Phys. Lett. 104, 022116 (2014).
http://dx.doi.org/10.1063/1.4861659
22.
22. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, Nature 514, 470474 (2014).
http://dx.doi.org/10.1038/nature13792
23.
23. H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z. J. Wong, Z. Ye, Y. Ye, X. Yin, and X. Zhang, Nat. Nanotechnol. 10, 151155 (2015).
http://dx.doi.org/10.1038/nnano.2014.309
24.
24. J. Qi, Y. W. Lan, A. Z. Stieg, J. H. Chen, Y. L. Zhong, L. J. Li, C. D. Chen, Y. Zhang, and K. L. Wang, Nat. Commun. 6, 7430 (2015).
http://dx.doi.org/10.1038/ncomms8430
25.
25. L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, and Q. Wang, J. Am. Chem. Soc. 135, 12131216 (2013).
http://dx.doi.org/10.1021/ja3108017
26.
26. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
27.
27. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 1550 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
28.
28. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
29.
29. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
30.
30. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.1651
31.
31. R. Resta and D. Vanderbilt, Physics of Ferroelectrics: a Modern Perspective ( Springer-Verlag, 2007), pp. 3168.
32.
32. D. Vanderbilt, J. Phys. Chem. Solids 61, 147151 (2000).
http://dx.doi.org/10.1016/S0022-3697(99)00273-5
33.
33. T. Grandke and L. Ley, Phys. Rev. B 16, 832 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.832
34.
34. D. D. Vaughn II, R. J. Patel, M. A. Hickner, and R. E. Schaak, J. Am. Chem. Soc. 132, 1517015172 (2010).
http://dx.doi.org/10.1021/ja107520b
35.
35. Y. Ishihara and I. Nakada, Phys. Status Solidi B 105, 285290 (1981).
http://dx.doi.org/10.1002/pssb.2221050131
36.
36. E. P. O. O'Reilly, J. Phys. C Solid State Phys. 15, 1449 (1982).
http://dx.doi.org/10.1088/0022-3719/15/7/013
37.
37. H. Wiedemeier and H. G. V. Schnering, Z. Kristallogr. 148, 295303 (1978).
http://dx.doi.org/10.1524/zkri.1978.148.3-4.295
38.
38. J. Vidal, S. Lany, M. d'Avezac, A. Zunger, A. Zakutayev, J. Francis, and J. Tate, Appl. Phys. Lett. 100, 032104 (2012).
http://dx.doi.org/10.1063/1.3675880
39.
39. K. R. Reddy, N. K. Reddy, and R. W. Miles, Sol. Energy Mater. Sol. Cells 90, 30413046 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.06.012
40.
40. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. David, and M. G. Kanatzidis, Nature 508, 373377 (2014).
http://dx.doi.org/10.1038/nature13184
41.
41. I. Lefebvre, M. A. Szymanski, J. Olivier-Fourcade, and J. C. Jumas, Phys. Rev. B 58, 1896 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.1896
42.
42. L. C. Gomes and A. Carvalho, Phys. Rev. B 92, 085406 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.085406
43.
43. L. C. Zhang, G. Qin, W. Z. Fang, H. J. Cui, Q. R. Zheng, Q. B. Yang, and G. Su, “ SnSe monolayer: Super-flexible, auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility,” preprint arXiv:1505.04590 (2015).
44.
44.See supplementary material at http://dx.doi.org/10.1063/1.4934750 for band structure of intrinsic GeS, GeSe, SnS, and SnSe.[Supplementary Material]
45.
45. V. Tran, R. Soklaski, Y. Liang, and L. Yang, Phys. Rev. B 89, 235319 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.235319
46.
46. Y. Liang, S. Huang, R. Soklaski, and L. Yang, Appl. Phys. Lett. 103, 042106 (2013).
http://dx.doi.org/10.1063/1.4816517
47.
47. M. A. Franzman, C. W. Schlenker, M. E. Thompson, and R. L. Brutchey, J. Am. Chem. Soc. 132, 40604061 (2010).
http://dx.doi.org/10.1021/ja100249m
48.
48. K. Shimada, Jpn. J. Appl. Phys., Part 2 45, L358 (2006).
http://dx.doi.org/10.1143/JJAP.45.L358
49.
49. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R10024
50.
50. Z. Zhu, J. Guan, D. Liu, and D. Tománek, ACS Nano 9, 8284 (2015).
http://dx.doi.org/10.1021/acsnano.5b02742
51.
51. J. W. Jiang and H. S. Park, Nat. Commun. 5, 4727 (2014).
http://dx.doi.org/10.1038/ncomms5727
52.
52. M. H. Zhao, Z. L. Wang, and S. X. Mao, Nano Lett. 4, 587590 (2004).
http://dx.doi.org/10.1021/nl035198a
53.
53. R. Bechmann, Phys. Rev. 110, 10601061 (1958).
http://dx.doi.org/10.1103/PhysRev.110.1060
54.
54. C. M. Lueng, H. L. W. Chan, C. Surya, and C. L. Choy, J. Appl. Phys. 88, 5360 (2000).
http://dx.doi.org/10.1063/1.1317244
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/17/10.1063/1.4934750
Loading
/content/aip/journal/apl/107/17/10.1063/1.4934750
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/17/10.1063/1.4934750
2015-10-27
2016-09-28

Abstract

We predict enormous, anisotropic piezoelectric effects in intrinsic monolayer group IV monochalcogenides (MX, M=Sn or Ge, X=Se or S), including SnSe, SnS, GeSe, and GeS. Using first-principle simulations based on the modern theory of polarization, we find that their piezoelectric coefficients are about one to two orders of magnitude larger than those of other 2D materials, such as MoS and GaSe, and bulk quartz and AlN which are widely used in industry. This enhancement is a result of the unique “puckered” C symmetry and electronic structure of monolayer group IV monochalcogenides. Given the achieved experimental advances in the fabrication of monolayers, their flexible character, and ability to withstand enormous strain, these 2D structures with giant piezoelectric effects may be promising for a broad range of applications such as nano-sized sensors, piezotronics, and energy harvesting in portable electronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/17/1.4934750.html;jsessionid=02-0cQceEES5Cki0vxc5mLUa.x-aip-live-03?itemId=/content/aip/journal/apl/107/17/10.1063/1.4934750&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/17/10.1063/1.4934750&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/17/10.1063/1.4934750'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,