Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/17/10.1063/1.4935029
1.
1. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 4652 (2001).
http://dx.doi.org/10.1038/35051009
2.
2. J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, Nature 426, 264267 (2003).
http://dx.doi.org/10.1038/nature02054
3.
3. J. Carolan, C. Harrold, C. Sparrow, E. Martn-Lpez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. OBrien, and A. Laing, Science 349, 711716 (2015).
http://dx.doi.org/10.1126/science.aab3642
4.
4. A. Politi, J. C. Matthews, M. G. Thompson, and J. L. O'Brien, IEEE J. Sel. Top. Quantum Electron. 15, 16731684 (2009).
http://dx.doi.org/10.1109/JSTQE.2009.2026060
5.
5. J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling et al., Opt. Commun. 327, 4955 (2014).
http://dx.doi.org/10.1016/j.optcom.2014.02.040
6.
6. Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O'Brien, and M. D. Dawson, Appl. Phys. Lett. 99, 161119 (2011).
http://dx.doi.org/10.1063/1.3656073
7.
7. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, Science 320, 646649 (2008).
http://dx.doi.org/10.1126/science.1155441
8.
8. T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. L. Linares, J. B. Spring et al., Phys. Rev. A 84, 060301 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.060301
9.
9. R. H. Hadfield, Nat. Photonics 3, 696705 (2009).
http://dx.doi.org/10.1038/nphoton.2009.230
10.
10. A. J. Bennett, D. C. Unitt, P. Atkinson, D. A. Ritchie, and A. J. Shields, Opt. Express 13, 5055 (2005).
http://dx.doi.org/10.1364/OPEX.13.000050
11.
11. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, Nat. Nanotechnol. 8, 213217 (2013).
http://dx.doi.org/10.1038/nnano.2012.262
12.
12. R. Stevenson, C. Salter, J. Nilsson, A. Bennett, M. Ward, I. Farrer, D. Ritchie, and A. Shields, Phys. Rev. Lett. 108, 040503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.040503
13.
13. G. Juska, V. Dimastrodonato, L. O. Mereni, A. Gocalinska, and E. Pelucchi, Nat. Photonics 7, 527531 (2013).
http://dx.doi.org/10.1038/nphoton.2013.128
14.
14. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 99, 261108 (2011).
http://dx.doi.org/10.1063/1.3672214
15.
15. M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe et al., Phys. Rev. Lett. 113, 093603 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.093603
16.
16. S. Kalliakos, Y. Brody, A. Schwagmann, A. J. Bennett, M. B. Ward, D. J. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, G. A. Jones et al., Appl. Phys. Lett. 104, 221109 (2014).
http://dx.doi.org/10.1063/1.4881887
17.
17. G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, Sci. Rep. 3, 1901 (2013).
http://dx.doi.org/10.1038/srep01901
18.
18. N. Prtljaga, R. Coles, J. O'Hara, B. Royall, E. Clarke, A. Fox, and M. Skolnick, Appl. Phys. Lett. 104, 231107 (2014).
http://dx.doi.org/10.1063/1.4883374
19.
19. K. D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S. M. Ulrich, M. Jetter, and P. Michler, J. Phys. D: Appl. Phys. 48(8), 085101 (2015).
http://dx.doi.org/10.1088/0022-3727/48/8/085101
20.
20. T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, Laser Photonics Rev. 8, L42L46 (2014).
http://dx.doi.org/10.1002/lpor.201400027
21.
21. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, Nat. Photonics 4, 174177 (2010).
http://dx.doi.org/10.1038/nphoton.2009.287
22.
22. M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J.-M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, Phys. Rev. Lett. 110, 177402 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177402
23.
23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687702 (2010).
http://dx.doi.org/10.1016/j.cpc.2009.11.008
24.
24. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 107, 67566769 (1997).
http://dx.doi.org/10.1063/1.475324
25.
25. M. Grundmann and D. Bimberg, Phys. Rev. B 55, 9740 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.9740
26.
26. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. Reinecke et al., Phys. Rev. B 65, 195315 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195315
27.
27. D. Gammon, E. Snow, B. Shanabrook, D. Katzer, and D. Park, Phys. Rev. Lett. 76, 3005 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3005
28.
28. N. C. Harris, G. R. Steinbrecher, J. Mower, Y. Lahini, M. Prabhu, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, preprint arXiv:1507.03406.
29.
29. J. C. Matthews, A. Politi, A. Stefanov, and J. L. O'Brien, Nat. Photonics 3, 346350 (2009).
http://dx.doi.org/10.1038/nphoton.2009.93
30.
30. A. Jamil, J. Skiba-Szymanska, S. Kalliakos, A. Schwagmann, M. B. Ward, Y. Brody, D. J. Ellis, I. Farrer, J. P. Griffiths, G. A. Jones et al., Appl. Phys. Lett. 104, 101108 (2014).
http://dx.doi.org/10.1063/1.4868428
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/17/10.1063/1.4935029
Loading
/content/aip/journal/apl/107/17/10.1063/1.4935029
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/17/10.1063/1.4935029
2015-10-29
2016-12-11

Abstract

Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/17/1.4935029.html;jsessionid=xbmkan_NrzOU_o3liMKz8rb8.x-aip-live-06?itemId=/content/aip/journal/apl/107/17/10.1063/1.4935029&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/17/10.1063/1.4935029&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/17/10.1063/1.4935029'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,