Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/18/10.1063/1.4934737
1.
1. H. C. Zhou, J. R. Long, and O. M. Yaghi, Chem. Rev. 112(2), 673 (2012).
http://dx.doi.org/10.1021/cr300014x
2.
2. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. Ö. Yazaydın, and J. T. Hupp, J. Am. Chem. Soc. 134(36), 15016 (2012).
http://dx.doi.org/10.1021/ja3055639
3.
3. W.-G. Lu, D.-C. Zhong, L. Jiang, and T.-B. Lu, Cryst. Growth Des. 12(7), 3675 (2012).
http://dx.doi.org/10.1021/cg300476e
4.
4. F. Vermoortele, R. Ameloot, L. Alaerts, R. Matthessen, B. Carlier, E. V. R. Fernandez, J. Gascon, F. Kapteijn, and D. E. De Vos, J. Mater. Chem. 22(20), 10313 (2012).
http://dx.doi.org/10.1039/c2jm16030g
5.
5. J. Liu, W. Zhou, J. Liu, I. Howard, G. Kilibarda, S. Schlabach, D. Coupry, M. Addicoat, S. Yoneda, Y. Tsutsui et al., Angew. Chem., Int. Ed. 54(25), 7441 (2015).
http://dx.doi.org/10.1002/anie.201501862
6.
6. V. Stavila, A. A. Talin, and M. D. Allendorf, Chem. Soc. Rev. 43(16), 5994 (2014).
http://dx.doi.org/10.1039/C4CS00096J
7.
7. H. Q. Pham, M. Toan, P.-T. Nguyen-Nguyen, Y. Kawazoe, H. Mizuseki, and N.-M. Duc, J. Phys. Chem. C 118(9), 4567 (2014).
http://dx.doi.org/10.1021/jp405997r
8.
8. A. Kuc, A. Enyashin, and G. Seifert, J. Phys. Chem. B 111(28), 8179 (2007).
http://dx.doi.org/10.1021/jp072085x
9.
9. K. T. Butler, C. H. Hendon, and A. Walsh, J. Am. Chem. Soc. 136(7), 2703 (2014).
http://dx.doi.org/10.1021/ja4110073
10.
10. L.-M. Yang, P. Ravindran, P. Vajeeston, and M. Tilset, Phys. Chem. Chem. Phys. 14(14), 4713 (2012).
http://dx.doi.org/10.1039/c2cp24091b
11.
11. K. Trepte, S. Schwalbe, and G. Seifert, Phys. Chem. Chem. Phys. 17(26), 17122 (2015).
http://dx.doi.org/10.1039/C5CP01881A
12.
12. L. M. Yang, Microporous Mesoporous Mater. 183, 218 (2014).
http://dx.doi.org/10.1016/j.micromeso.2013.09.031
13.
13. D. E. P. Vanpoucke, J. W. Jaeken, S. De Baerdemacker, K. Lejaeghere, and V. Van Speybroeck, Beilstein J. Nanotechnol. 5, 1738 (2014).
http://dx.doi.org/10.3762/bjnano.5.184
14.
14. L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen, K. P. Lillerud, and C. Lamberti, Chem. Mater. 23(7), 1700 (2011).
http://dx.doi.org/10.1021/cm1022882
15.
15. T. Musho, J. Li, and N. Wu, Phys. Chem. Chem. Phys. 16(43), 23646 (2014).
http://dx.doi.org/10.1039/C4CP03110E
16.
16. S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, Science 283(5405), 1148 (1999).
http://dx.doi.org/10.1126/science.283.5405.1148
17.
17. K. Schlichte, T. Kratzke, and S. Kaskel, Microporous Mesoporous Mater. 73(1–2), 81 (2004).
http://dx.doi.org/10.1016/j.micromeso.2003.12.027
18.
18. L. Alaerts, E. Seguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, and D. E. De Vos, Chem. - Eur. J. 12(28), 7353 (2006).
http://dx.doi.org/10.1002/chem.200600220
19.
19. L. Heinke, Z. Gu, and C. Wöll, Nat. Commun. 5, 4562 (2014).
http://dx.doi.org/10.1038/ncomms5562
20.
20. A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, Chem. Commun. 48(5), 663 (2012).
http://dx.doi.org/10.1039/C1CC16580A
21.
21. J. Liu, T. Wächter, A. Irmler, P. G. Weidler, H. Gliemann, F. Pauly, V. Mugnaini, M. Zharnikov, and C. Wöll, ACS Appl. Mater. Interfaces 7(18), 9824 (2015).
http://dx.doi.org/10.1021/acsami.5b01792
22.
22. A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon et al., Science 343(6166), 66 (2014).
http://dx.doi.org/10.1126/science.1246738
23.
23. H. C. Streit, M. Adlung, O. Shekhah, X. Stammer, H. K. Arslan, O. Zybaylo, T. Ladnorg, H. Gliemann, M. Franzreb, C. Wöll et al., ChemPhysChem 13(11), 2699 (2012).
http://dx.doi.org/10.1002/cphc.201200262
24.
24. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer et al., J. Am. Chem. Soc. 129(49), 15118 (2007).
http://dx.doi.org/10.1021/ja076210u
25.
25. L. Heinke, M. Tu, S. Wannapaiboon, R. A. Fischer, and C. Wöll, Microporous Mesoporous Mater. 216, 200 (2015).
http://dx.doi.org/10.1016/j.micromeso.2015.03.018
26.
26. L. Heinke, M. Cakici, M. Dommaschk, S. Grosjean, R. Herges, S. Bräse, and C. Wöll, ACS Nano 8(2), 1463 (2014).
http://dx.doi.org/10.1021/nn405469g
27.
27. M. Cakici, Z.-G. Gu, M. Nieger, J. Burck, L. Heinke, and S. Bräse, Chem. Commun. 51(23), 4796 (2015).
http://dx.doi.org/10.1039/C5CC00694E
28.
28. Z. Gu, S. Grosjean, S. Bräse, C. Wöll, and L. Heinke, Chem. Commun. 51, 8998 (2015).
http://dx.doi.org/10.1039/C5CC02706C
29.
29. Z. Wang, L. Heinke, J. Jelic, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosjean, R. Herges, S. Bräse et al., Phys. Chem. Chem. Phys. 17, 14582 (2015).
http://dx.doi.org/10.1039/C5CP01372K
30.
30. W. Zhou, C. Wöll, and L. Heinke, Materials 8(6), 3767 (2015).
http://dx.doi.org/10.3390/ma8063767
31.
31. Z.-G. Gu, A. Pfriem, S. Hamsch, H. Breitwieser, J. Wohlgemuth, L. Heinke, H. Gliemann, and C. Wöll, Microporous Mesoporous Mater. 211(0), 82 (2015).
http://dx.doi.org/10.1016/j.micromeso.2015.02.048
32.
32. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6(1), 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
33.
33. G. Kresse and J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
34.
34. G. Kresse and J. Hafner, Phys. Rev. B 47(1), 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
35.
35. G. Kresse and J. Hafner, Phys. Rev. B 49(20), 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
36.
36. G. Kresse and D. Joubert, Phys. Rev. B 59(3), 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
37.
37. P. E. Blöchl, Phys. Rev. B 50(24), 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
38.
38. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
39. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78(7), 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.4934737 for computational details.[Supplementary Material]
41.
41. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
42.
42. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyan, J. Chem. Phys. 125(24), 249901 (2006).
http://dx.doi.org/10.1063/1.2403866
43.
43. Z.-G. Gu, J. Bürck, A. Bihlmeier, J. Liu, O. Shekhah, P. G. Weidler, C. Azucena, Z. Wang, S. Heissler, H. Gliemann et al., Chem. - Eur. J. 20(32), 9879 (2014).
http://dx.doi.org/10.1002/chem.201403524
44.
44. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light ( Elsevier, Amsterdam, 1992).
45.
45. K. D. Vogiatzis, W. Klopper, A. Mavrandonakis, and K. Fink, ChemPhysChem 12(17), 3307 (2011).
http://dx.doi.org/10.1002/cphc.201100559
46.
46. M. Kühn and F. Weigend, J. Chem. Phys. 141(22), 224302 (2014).
http://dx.doi.org/10.1063/1.4902013
47.
47. O. Laporte and W. F. Meggers, J. Opt. Soc. Am. 11(5), 459 (1925).
http://dx.doi.org/10.1364/JOSA.11.000459
48.
48. P. Atkins and J. De Paula, Physical Chemistry ( Oxford University Press, 2006).
49.
49.TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com.
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/18/10.1063/1.4934737
Loading
/content/aip/journal/apl/107/18/10.1063/1.4934737
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/18/10.1063/1.4934737
2015-11-02
2016-12-08

Abstract

The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low--dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/18/1.4934737.html;jsessionid=31XRl8w_3F7ODg23cnMewEm8.x-aip-live-06?itemId=/content/aip/journal/apl/107/18/10.1063/1.4934737&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/18/10.1063/1.4934737&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/18/10.1063/1.4934737'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,