Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. C. Zhou, J. R. Long, and O. M. Yaghi, Chem. Rev. 112(2), 673 (2012).
2. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. Ö. Yazaydın, and J. T. Hupp, J. Am. Chem. Soc. 134(36), 15016 (2012).
3. W.-G. Lu, D.-C. Zhong, L. Jiang, and T.-B. Lu, Cryst. Growth Des. 12(7), 3675 (2012).
4. F. Vermoortele, R. Ameloot, L. Alaerts, R. Matthessen, B. Carlier, E. V. R. Fernandez, J. Gascon, F. Kapteijn, and D. E. De Vos, J. Mater. Chem. 22(20), 10313 (2012).
5. J. Liu, W. Zhou, J. Liu, I. Howard, G. Kilibarda, S. Schlabach, D. Coupry, M. Addicoat, S. Yoneda, Y. Tsutsui et al., Angew. Chem., Int. Ed. 54(25), 7441 (2015).
6. V. Stavila, A. A. Talin, and M. D. Allendorf, Chem. Soc. Rev. 43(16), 5994 (2014).
7. H. Q. Pham, M. Toan, P.-T. Nguyen-Nguyen, Y. Kawazoe, H. Mizuseki, and N.-M. Duc, J. Phys. Chem. C 118(9), 4567 (2014).
8. A. Kuc, A. Enyashin, and G. Seifert, J. Phys. Chem. B 111(28), 8179 (2007).
9. K. T. Butler, C. H. Hendon, and A. Walsh, J. Am. Chem. Soc. 136(7), 2703 (2014).
10. L.-M. Yang, P. Ravindran, P. Vajeeston, and M. Tilset, Phys. Chem. Chem. Phys. 14(14), 4713 (2012).
11. K. Trepte, S. Schwalbe, and G. Seifert, Phys. Chem. Chem. Phys. 17(26), 17122 (2015).
12. L. M. Yang, Microporous Mesoporous Mater. 183, 218 (2014).
13. D. E. P. Vanpoucke, J. W. Jaeken, S. De Baerdemacker, K. Lejaeghere, and V. Van Speybroeck, Beilstein J. Nanotechnol. 5, 1738 (2014).
14. L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen, K. P. Lillerud, and C. Lamberti, Chem. Mater. 23(7), 1700 (2011).
15. T. Musho, J. Li, and N. Wu, Phys. Chem. Chem. Phys. 16(43), 23646 (2014).
16. S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, Science 283(5405), 1148 (1999).
17. K. Schlichte, T. Kratzke, and S. Kaskel, Microporous Mesoporous Mater. 73(1–2), 81 (2004).
18. L. Alaerts, E. Seguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, and D. E. De Vos, Chem. - Eur. J. 12(28), 7353 (2006).
19. L. Heinke, Z. Gu, and C. Wöll, Nat. Commun. 5, 4562 (2014).
20. A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, Chem. Commun. 48(5), 663 (2012).
21. J. Liu, T. Wächter, A. Irmler, P. G. Weidler, H. Gliemann, F. Pauly, V. Mugnaini, M. Zharnikov, and C. Wöll, ACS Appl. Mater. Interfaces 7(18), 9824 (2015).
22. A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon et al., Science 343(6166), 66 (2014).
23. H. C. Streit, M. Adlung, O. Shekhah, X. Stammer, H. K. Arslan, O. Zybaylo, T. Ladnorg, H. Gliemann, M. Franzreb, C. Wöll et al., ChemPhysChem 13(11), 2699 (2012).
24. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer et al., J. Am. Chem. Soc. 129(49), 15118 (2007).
25. L. Heinke, M. Tu, S. Wannapaiboon, R. A. Fischer, and C. Wöll, Microporous Mesoporous Mater. 216, 200 (2015).
26. L. Heinke, M. Cakici, M. Dommaschk, S. Grosjean, R. Herges, S. Bräse, and C. Wöll, ACS Nano 8(2), 1463 (2014).
27. M. Cakici, Z.-G. Gu, M. Nieger, J. Burck, L. Heinke, and S. Bräse, Chem. Commun. 51(23), 4796 (2015).
28. Z. Gu, S. Grosjean, S. Bräse, C. Wöll, and L. Heinke, Chem. Commun. 51, 8998 (2015).
29. Z. Wang, L. Heinke, J. Jelic, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosjean, R. Herges, S. Bräse et al., Phys. Chem. Chem. Phys. 17, 14582 (2015).
30. W. Zhou, C. Wöll, and L. Heinke, Materials 8(6), 3767 (2015).
31. Z.-G. Gu, A. Pfriem, S. Hamsch, H. Breitwieser, J. Wohlgemuth, L. Heinke, H. Gliemann, and C. Wöll, Microporous Mesoporous Mater. 211(0), 82 (2015).
32. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6(1), 15 (1996).
33. G. Kresse and J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996).
34. G. Kresse and J. Hafner, Phys. Rev. B 47(1), 558 (1993).
35. G. Kresse and J. Hafner, Phys. Rev. B 49(20), 14251 (1994).
36. G. Kresse and D. Joubert, Phys. Rev. B 59(3), 1758 (1999).
37. P. E. Blöchl, Phys. Rev. B 50(24), 17953 (1994).
38. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).
39. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78(7), 1396 (1997).
40.See supplementary material at for computational details.[Supplementary Material]
41. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003).
42. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyan, J. Chem. Phys. 125(24), 249901 (2006).
43. Z.-G. Gu, J. Bürck, A. Bihlmeier, J. Liu, O. Shekhah, P. G. Weidler, C. Azucena, Z. Wang, S. Heissler, H. Gliemann et al., Chem. - Eur. J. 20(32), 9879 (2014).
44. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light ( Elsevier, Amsterdam, 1992).
45. K. D. Vogiatzis, W. Klopper, A. Mavrandonakis, and K. Fink, ChemPhysChem 12(17), 3307 (2011).
46. M. Kühn and F. Weigend, J. Chem. Phys. 141(22), 224302 (2014).
47. O. Laporte and W. F. Meggers, J. Opt. Soc. Am. 11(5), 459 (1925).
48. P. Atkins and J. De Paula, Physical Chemistry ( Oxford University Press, 2006).
49.TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from

Data & Media loading...


Article metrics loading...



The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low--dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd