Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/18/10.1063/1.4935235
1.
1. C. Kane and E. Mele, Phys. Rev. Lett. 95, 146802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.146802
2.
2. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
http://dx.doi.org/10.1126/science.1133734
3.
3. Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 329, 659 (2010).
http://dx.doi.org/10.1126/science.1189924
4.
4. C. Niu, Y. Dai, M. Guo, W. Wei, Y. Ma, and B. Huang, Appl. Phys. Lett. 98, 252502 (2011).
http://dx.doi.org/10.1063/1.3601020
5.
5. C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Science 340, 167 (2013).
http://dx.doi.org/10.1126/science.1234414
6.
6. R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Nat. Phys. 6, 284 (2010).
http://dx.doi.org/10.1038/nphys1534
7.
7. W.-K. Tse and A. H. MacDonald, Phys. Rev. Lett. 105, 057401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.057401
8.
8. X. Zhang and S.-C. Zhang, Proc. SPIE 8373, 837309 (2012).
http://dx.doi.org/10.1117/12.920325
9.
9. A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E. A. Kim, N. Samarth, and D. C. Ralph, Nature 511, 449 (2014).
http://dx.doi.org/10.1038/nature13534
10.
10. J. Wang, B. Lian, and S.-C. Zhang, Phys. Rev. Lett. 115, 036805 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.036805
11.
11. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
12.
12. J.-M. Zhang, W. Zhu, Y. Zhang, D. Xiao, and Y. Yao, Phys. Rev. Lett. 109, 266405 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.266405
13.
13. V. Kulbachinskii, A. Kaminskii, K. Kindo, Y. Narumi, K. Suga, P. Lostak, and P. Svanda, Physica B 311, 292 (2002).
http://dx.doi.org/10.1016/S0921-4526(01)00975-9
14.
14. J. Choi, S. Choi, J. Choi, Y. Park, H. Park, H. Lee, B. Woo, and S. Cho, Phys. Status Solidi B 241, 1541 (2004).
http://dx.doi.org/10.1002/pssb.200304527
15.
15. J. W. G. Bos, M. Lee, E. Morosan, H. W. Zandbergen, W. L. Lee, N. P. Ong, and R. J. Cava, Phys. Rev. B 74, 184429 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.184429
16.
16. Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195203
17.
17. M. Watson, L. Collins-McIntyre, A. Coldea, D. Prabhakaran, L. R. Shelford, S. C. Speller, T. Mousavi, C. Grovenor, Z. Salman, S. R. Giblin, G. van der Laan, and T. Hesjedal, New J. Phys. 15, 103016 (2013).
http://dx.doi.org/10.1088/1367-2630/15/10/103016
18.
18. L. J. Collins-McIntyre, M. D. Watson, A. A. Baker, S. L. Zhang, A. I. Coldea, S. E. Harrison, A. Pushp, A. J. Kellock, S. S. P. Parkin, G. van der Laan, and T. Hesjedal, AIP Adv. 4, 127136 (2014).
http://dx.doi.org/10.1063/1.4904900
19.
19. R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Science 329, 61 (2010).
http://dx.doi.org/10.1126/science.1187485
20.
20. P. P. J. Haazen, J. B. Laloe, T. J. Nummy, H. J. M. Swagten, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, Appl. Phys. Lett. 100, 082404 (2012).
http://dx.doi.org/10.1063/1.3688043
21.
21. L. J. Collins-McIntyre, S. E. Harrison, P. Schoenherr, N.-J. Steinke, C. J. Kinane, T. R. Charlton, D. Alba-Veneroa, A. Pushp, A. J. Kellock, S. S. P. Parkin, J. S. Harris, S. Langridge, G. van der Laan, and T. Hesjedal, EPL 107, 57009 (2014).
http://dx.doi.org/10.1209/0295-5075/107/57009
22.
22. A. I. Figueroa, G. van der Laan, L. J. Collins-McIntyre, S.-L. Zhang, A. A. Baker, S. E. Harrison, P. Schoenherr, G. Cibin, and T. Hesjedal, Phys. Rev. B 90, 134402 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.134402
23.
23. A. I. Figueroa, G. van der Laan, L. J. Collins-McIntyre, G. Cibin, A. J. Dent, and T. Hesjedal, J. Phys. Chem. C 119, 17344 (2015).
http://dx.doi.org/10.1021/jp511713s
24.
24. S. Li, S. Harrison, Y. Huo, A. Pushp, H. Yuan, B. Zhou, A. Kellock, S. Parkin, Y.-L. Chen, T. Hesjedal, and J. Harris, Appl. Phys. Lett. 102, 242412 (2013).
http://dx.doi.org/10.1063/1.4812292
25.
25. S. E. Harrison, L. J. Collins-McIntyre, S. Li, A. A. Baker, L. R. Shelford, Y. Huo, A. Pushp, S. S. P. Parkin, J. S. Harris, E. Arenholz, G. van der Laan, and T. Hesjedal, J. Appl. Phys. 115, 023904 (2014).
http://dx.doi.org/10.1063/1.4861615
26.
26. S. E. Harrison, L. J. Collins-McIntyre, S.-L. Zhang, A. A. Baker, A. I. Figueroa, A. J. Kellock, A. Pushp, S. S. P. Parkin, J. S. Harris, G. van der Laan, and T. Hesjedal, J. Phys.: Condens. Matter 27, 245602 (2015).
http://dx.doi.org/10.1088/0953-8984/27/24/245602
27.
27. S. E. Harrison, L. J. Collins-McIntyre, P. Schönherr, A. Vailionis, V. Srot, P. A. van Aken, A. J. Kellock, A. Pushp, S. S. P. Parkin, J. S. Harris, B. Zhou, Y. L. Chen, and T. Hesjedal, Sci. Rep. 5, 15767 (2015).
http://dx.doi.org/10.1038/srep15767
28.
28. S. Harrison, S. Li, Y. Huo, B. Zhou, Y.-L. Chen, and J. Harris, Appl. Phys. Lett. 102, 171906 (2013).
http://dx.doi.org/10.1063/1.4803717
29.
29. K. Virwani, S. E. Harrison, A. Pushp, T. Topuria, E. Delenia, P. Rice, A. Kellock, L. Collins-McIntyre, J. Harris, T. Hesjedal, and S. S. P. Parkin, Appl. Phys. Lett. 105, 241605 (2014).
http://dx.doi.org/10.1063/1.4904803
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4935235 for rocking curve analysis, reciprocal space maps, and bandstructure plots obtained at different photon energies.[Supplementary Material]
31.
31. T. Holland and S. Redfern, Mineral. Mag. 61, 65 (1997).
http://dx.doi.org/10.1180/minmag.1997.061.404.07
32.
32. A. Majid, A. Dar, and J. J. Zhu, J. Magn. Magn. Mater. 374, 676 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.09.041
33.
33. O. Zhong-Wen and R. Guang-Hui, Chin. Phys. B 22, 097501 (2013).
http://dx.doi.org/10.1088/1674-1056/22/9/097501
34.
34. G. van der Laan, J. Phys.: Conf. Ser. 430, 012127 (2013).
http://dx.doi.org/10.1088/1742-6596/430/1/012127
35.
35. G. van der Laan and A. I. Figueroa, Coord. Chem. Rev. 277–278, 95 (2014).
http://dx.doi.org/10.1016/j.ccr.2014.03.018
36.
36. B. T. Thole, G. van der Laan, J. C. Fuggle, G. A. Sawatzky, R. C. Karnatak, and J. M. Esteva, Phys. Rev. B 32, 5107 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.5107
37.
37. G. van der Laan, Lect. Notes Phys. 697, 143 (2006).
http://dx.doi.org/10.1007/3-540-33242-1_7
38.
38. S. E. Harrison, B. Zhou, Y. Huo, A. Pushp, A. J. Kellock, S. S. P. Parkin, J. S. Harris, Y. Chen, and T. Hesjedal, Appl. Phys. Lett. 105, 121608 (2014).
http://dx.doi.org/10.1063/1.4896632
39.
39. Y.-L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).
http://dx.doi.org/10.1126/science.1173034
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/18/10.1063/1.4935235
Loading
/content/aip/journal/apl/107/18/10.1063/1.4935235
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/18/10.1063/1.4935235
2015-11-03
2016-12-09

Abstract

Breaking time-reversal symmetry through magnetic doping of topological insulators has been identified as a key strategy for unlocking exotic physical states. Here, we report the growth of BiTe thin films doped with the highest magnetic moment element Ho. Diffraction studies demonstrate high quality films for up to 21% Ho incorporation. Superconducting quantum interference device magnetometry reveals paramagnetism down to 2 K with an effective magnetic moment of ∼5  /Ho. Angle-resolved photoemission spectroscopy shows that the topological surface state remains intact with Ho doping, consistent with the material's paramagnetic state. The large saturation moment achieved makes these films useful for incorporation into heterostructures, whereby magnetic order can be introduced via interfacial coupling.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/18/1.4935235.html;jsessionid=JSzpJH0jzhvFDGGe3ZNrDUNr.x-aip-live-02?itemId=/content/aip/journal/apl/107/18/10.1063/1.4935235&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/18/10.1063/1.4935235&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/18/10.1063/1.4935235'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,