Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/18/10.1063/1.4935457
1.
1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
http://dx.doi.org/10.1038/347539a0
2.
2. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998).
http://dx.doi.org/10.1038/25954
3.
3. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
http://dx.doi.org/10.1038/nature04645
4.
4. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
http://dx.doi.org/10.1038/nature08003
5.
5. Y. B. Zhao, L. P. Zhu, J. S. Chen, and D. G. Ma, Org. Electron. 13, 1340 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.04.015
6.
6. H. Sasabe and J. J. Kido, J. Mater. Chem. C 1, 1699 (2013).
http://dx.doi.org/10.1039/c2tc00584k
7.
7. C. H. Gao, D. Y. Zhou, W. Gu, X. B. Shi, Z. K. Wang, and L. S. Liao, Org. Electron. 14, 1177 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.02.013
8.
8. E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, Adv. Mater. 19, 197 (2007).
http://dx.doi.org/10.1002/adma.200602174
9.
9. Q. Wang, J. Q. Ding, D. G. Ma, Y. X. Cheng, L. X. Wang, X. B. Jing, and F. S. Wang, Adv. Funct. Mater. 19, 84 (2009).
http://dx.doi.org/10.1002/adfm.200800918
10.
10. J. H. Seo, S. J. Lee, B. M. Seo, S. J. Moon, K. H. Lee, J. K. Park, S. Yoon, and Y. K. Kim, Org. Electron. 11, 1759 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.07.015
11.
11. M. E. Kondakova, J. C. Deaton, T. D. Pawlik, D. J. Giesen, D. Y. Kondakov, R. H. Young, T. L. Royster, D. L. Comfort, and J. D. Shore, J. Appl. Phys. 107, 014515 (2010).
http://dx.doi.org/10.1063/1.3275053
12.
12. S. L. Lai, S. L. Tao, M. Y. Chan, T. W. Ng, M. F. Lo, C. S. Lee, X. H. Zhang, and S. T. Lee, Org. Electron. 11, 1511 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.06.011
13.
13. G. Cheng, Y. F. Zhang, Y. Zhao, Y. Y. Lin, C. Y. Ruan, S. Y. Liu, T. Fei, Y. G. Ma, and Y. X. Cheng, Appl. Phys. Lett. 89, 043504 (2006).
http://dx.doi.org/10.1063/1.2227645
14.
14. S. Tokitoa, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, Appl. Phys. Lett. 83, 569 (2003).
http://dx.doi.org/10.1063/1.1594834
15.
15. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, Appl. Phys. Lett. 82, 2422 (2003).
http://dx.doi.org/10.1063/1.1568146
16.
16. C. J. Zheng, J. Wang, J. Ye, M. F. Lo, X. K. Liu, M. K. Fung, X. H. Zhang, and C. S. Lee, Adv. Mater. 25, 2205 (2013).
http://dx.doi.org/10.1002/adma.201204724
17.
17. C. H. Chang, C. L. Ho, Y. S. Chang, I. C. Lien, C. H. Lin, Y. W. Yang, J. L. Liao, and Y. Chi, J. Mater. Chem. C 1, 2639 (2013).
http://dx.doi.org/10.1039/c3tc00919j
18.
18. S. L. Gong, Y. H. Chen, C. L. Yang, C. Zhong, J. G. Qin, and D. G. Ma, Adv. Mater. 22, 5370 (2010).
http://dx.doi.org/10.1002/adma.201002732
19.
19. E. Mondal, W. Y. Hung, H. C. Dai, and K. T. Wong, Adv. Funct. Mater. 23, 3096 (2013).
http://dx.doi.org/10.1002/adfm.201202889
20.
20. S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, Jpn. J. Appl. Phys., Part 2 40, L783 (2001).
http://dx.doi.org/10.1143/JJAP.40.L783
21.
21. S. L. Tao, Y. C. Zhou, C. S. Lee, S. T. Lee, D. Huang, and X. H. Zhang, J. Phys. Chem. C 112, 14603 (2008).
http://dx.doi.org/10.1021/jp803957p
22.
22. J. Huang, Y. B. Jiang, J. Yang, R. L. Tang, N. Xie, Q. Q. Li, H. S. Kwok, B. Z. Tang, and Z. Li, J. Mater. Chem. C 2, 2028 (2014).
http://dx.doi.org/10.1039/c3tc32207f
23.
23. J. Huang, N. Sun, Y. Q. Dong, R. L. Tang, P. Lu, P. Cai, Q. Q. Li, D. G. Ma, J. G. Qin, and Z. Li, Adv. Funct. Mater. 23, 2329 (2013).
http://dx.doi.org/10.1002/adfm.201202639
24.
24. W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, J. Ye, M. Chen, F. Lu, Q. X. Tong, F. L. Wong, and C. S. Lee, Org. Electron. 17, 159 (2015).
http://dx.doi.org/10.1016/j.orgel.2014.11.024
25.
25. W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong, F. L. Wong, and C. S. Lee, Adv. Opt. Mater. 2, 626 (2014).
http://dx.doi.org/10.1002/adom.201400078
26.
26. Y. C. Li, Z. H. Wang, X. L. Li, G. Z. Xie, D. C. Chen, Y. F. Wang, C. C. Lo, A. Lien, J. B. Peng, Y. Cao, and S. J. Su, Chem. Mater. 27, 1100 (2015).
http://dx.doi.org/10.1021/cm504441v
27.
27. N. Sun, Q. Wang, Y. B. Zhao, Y. H. Chen, D. Z. Yang, F. C. Zhao, J. S. Chen, and D. G. Ma, Adv. Mater. 26, 1617 (2014).
http://dx.doi.org/10.1002/adma.201304779
28.
28. Y. B. Zhao, J. S. Chen, and D. G. Ma, ACS Appl. Mater. Interfaces 5, 965 (2013).
http://dx.doi.org/10.1021/am3026097
29.
29. S. M. Chen, G. P. Tan, W. Y. Wong, and H. S. Kwok, Adv. Funct. Mater. 21, 3785 (2011).
http://dx.doi.org/10.1002/adfm.201100895
30.
30. Y. H. Chen, F. C. Zhao, Y. B. Zhao, J. S. Chen, and D. G. Ma, Org. Electron. 13, 2807 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.08.031
31.
31. L. M. Huang, G. M. Tu, Y. Chi, W. Y. Hung, Y. C. Song, M. R. Tseng, P. T. Chou, G. H. Lee, K. T. Wong, S. H. Cheng, and W. S. Tsai, J. Mater. Chem. C 1, 7582 (2013).
http://dx.doi.org/10.1039/c3tc31524j
32.
32. Y. S. Park, J. W. Kang, D. M. Kang, J. W. Park, Y. H. Kim, S. K. Kwon, and J. J. Kim, Adv. Mater. 20, 1957 (2008).
http://dx.doi.org/10.1002/adma.200702435
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/18/10.1063/1.4935457
Loading
/content/aip/journal/apl/107/18/10.1063/1.4935457
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/18/10.1063/1.4935457
2015-11-05
2016-09-27

Abstract

Efficient fluorescence/phosphorescence hybrid white organic light-emitting diodes (OLEDs) with single doped co-host structure have been fabricated. Device using 9-Naphthyl-10 -(4-triphenylamine)anthrancene as the fluorescent dopant and Ir(ppy) and Ir(2-phq) as the green and orange phosphorescent dopants show the luminous efficiency of 12.4% (17.6 lm/W, 27.5 cd/A) at 1000 cd/m2. Most important to note that the efficiency-brightness roll-off of the device was very mild. With the brightness rising up to 5000 and 10 000 cd/m2, the efficiency could be kept at 11.8% (14.0 lm/W, 26.5 cd/A) and 11.0% (11.8 lm/W, 25.0 cd/A). The Commission Internationale de L'Eclairage (CIE) coordinates and color rending index (CRI) were measured to be (0.45, 0.48) and 65, respectively, and remained the same in a large range of brightness (1000–10 000 cd/m2), which is scarce in the reported white OLEDs. The performance of the device at high luminance (5000 and 10 000 cd/m2) was among the best reported results including fluorescence/phosphorescence hybrid and all-phosphorescent white OLEDs. Moreover, the CRI of the white OLED can be improved to 83 by using a yellow-green emitter (Ir(ppy)bop) in the device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/18/1.4935457.html;jsessionid=5mudbtBQJndghPLVb1EuMdZF.x-aip-live-02?itemId=/content/aip/journal/apl/107/18/10.1063/1.4935457&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/18/10.1063/1.4935457&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/18/10.1063/1.4935457'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,