Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
2. C. J. Brabec, V. Dyakonov, J. S. Parisi, and N. S. Sariciftci, Organic Photovoltaics: Concepts and Realization ( Springer, Berlin, 2003).
3. S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, Adv. Mater. 20, 4061 (2008).
4. K. Norman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, J. Am. Chem. Soc. 132, 16883 (2010).
5. H. Choi, H.-B. Kim, S.-J. Ko, J. Y. Kim, and A. J. Heeger, Adv. Mater. 27, 892 (2015).
6. H. Ma, H. L. Yip, F. Huang, and A. K. Y. Jen, Adv. Funct. Mater. 20, 1371 (2010).
7. R. Steim, F. R. Kogler, and C. J. Brabec, J. Mater. Chem. 20, 2499 (2010).
8. S.-I. Na, T. S. Kim, S. H. Oh, J. K. Kim, S. S. Kim, and D. Y. Kim, Appl. Phys. Lett. 97, 223305 (2010).
9. L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575 (2010).
10. J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim, and S.-I. Na, Nano Energy 12, 96 (2015).
11. R. Steim, S. A. Choulis, P. Schilinsky, and C. J. Brabec, Appl. Phys. Lett. 92, 093303 (2008).
12. L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
13. Y.-J. Noh, S.-I. Na, and S.-S. Kim, Sol. Energy Mater. Sol. Cells 117, 139 (2013).
14. J.-S. Yeo, J.-M. Yun, Y.-S. Jung, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, and S.-I. Na, J. Mater. Chem. A 2, 292 (2014).
15. S.-H. Kim, C.-H. Lee, J.-M. Yun, Y.-J. Noh, S.-S. Kim, S. Lee, S. M. Jo, H.-I. Joh, and S.-I. Na, Nanoscale 6, 7183 (2014).
16. J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, Adv. Mater. 23, 70 (2011).
17. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
18. H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, T.-Q. Nguyen, G. C. Bazan, and A. J. Heeger, Adv. Mater. 26, 780 (2014).
19. J. H. Seo, R. Yang, J. Z. Brzezinski, B. Walker, G. C. Bazan, and T.-Q. Nguyen, Adv. Mater. 21, 1006 (2009).
20. J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, Adv. Mater. 24, 2228 (2012).
21. G.-Q. Fan, Q.-Q. Zhuo, J.-J. Zhu, Z.-Q. Xu, P.-P. Cheng, Y.-Q. Li, X.-H. Sun, S.-T. Lee, and J.-X. Tang, J. Mater. Chem. 22, 15614 (2012).
22. S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, ACS Nano 4, 3169 (2010).
23. Y. Gao, H.-L. Yip, K.-S. Chen, K. M. O'Malley, O. Acton, Y. Sun, G. Ting, H. Chen, and A. K.-Y. Jen, Adv. Mater. 23, 1903 (2011).
24. J. Liu, Y. Xue, and L. Dai, J. Phys. Chem. Lett. 3, 1928 (2012).
25. J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, Adv. Mater. 23, 4923 (2011).
26. A. Furst, R. C. Berlo, and S. Hooton, Chem. Rev. 65, 51 (1965).
27. V. H. Pham, T. V. Cuong, T.-D. Nguyen-Phan, H. D. Pham, E. J. Kim, S. H. Hur, E. W. Shin, S. Kim, and J. S. Chung, Chem. Commun. 46, 4375 (2010).
28. H. Wang, J. T. Robinson, X. Li, and H. Dai, J. Am. Chem. Soc. 131, 9910 (2009).
29. C. Nethravathi and M. Rajamathi, Carbon 46, 19941998 (2008).
30. K.-H. Liao, A. Mittal, S. Bose, C. Leighton, K. A. Mkhoyan, and C. W. Macosko, ACS Nano 5, 1253 (2011).
31. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, J. Am. Chem. Soc. 131, 15939 (2009).
32. M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater. 19, 4396 (2007).
33. Y.-J. Noh, S.-C. Park, I.-T. Hwang, J.-H. Choi, S.-S. Kim, C.-H. Jung, and S.-I. Na, Carbon 79, 321 (2014).
34. L. Chen, D. Du, K. Sun, J. Hou, and J. Ouyang, ACS Appl. Mater. Interfaces 6, 22334 (2014).
35. Y.-J. Jeon, J.-M. Yun, D.-Y. Kim, S.-I. Na, and S.-S. Kim, Sol. Energy Mater. Sol. Cells 105, 96 (2012).
36. K. C. Kwon, K. S. Choi, and S. Y. Kim, Adv. Funct. Mater. 22, 4724 (2012).
37. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, ACS Nano 4, 2689 (2010).
38. Y.-J. Go, J.-M. Yun, Y.-J. Noh, J.-S. Yeo, S.-S. Kim, C.-H. Jung, S.-H. Oh, S.-Y. Yang, D-Y. Kim, and S.-I. Na, Appl. Phys. Lett. 102, 163302 (2013).
39. M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz, A. Elschner, O. Haillant, T. R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. M. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J.-B. Bonekamp, A. J. J. M. vanBreemen, C. Girotto, E. Voroshazi, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 95, 1253 (2011).
40. S. M. Kim, K. K. Kim, Y. W. Jo, M. H. Park, S. J. Chae, D. L. Duong, C. W. Yang, J. Kong, and Y. H. Lee, ACS Nano 5, 1236 (2011).
41. K. C. Kwon, B. J. Kim, J.-L. Lee, and S. Y. Kim, J. Mater. Chem. C 1, 24632469 (2013).
42. H. Yamaguchi, J. Granstrom, W. Nie, H. Sojoudi, T. Fujita, D. Voiry, M. Chen, G. Gupta, A. D. Mohite, S. Graham, and M. Chhowalla, Adv. Energy Mater. 4, 1300986 (2014).

Data & Media loading...


Article metrics loading...



We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd