Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/107/2/10.1063/1.4926799
1.
1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
2.
2. C. J. Brabec, V. Dyakonov, J. S. Parisi, and N. S. Sariciftci, Organic Photovoltaics: Concepts and Realization ( Springer, Berlin, 2003).
3.
3. S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, Adv. Mater. 20, 4061 (2008).
http://dx.doi.org/10.1002/adma.200800338
4.
4. K. Norman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, J. Am. Chem. Soc. 132, 16883 (2010).
http://dx.doi.org/10.1021/ja106299g
5.
5. H. Choi, H.-B. Kim, S.-J. Ko, J. Y. Kim, and A. J. Heeger, Adv. Mater. 27, 892 (2015).
http://dx.doi.org/10.1002/adma.201404172
6.
6. H. Ma, H. L. Yip, F. Huang, and A. K. Y. Jen, Adv. Funct. Mater. 20, 1371 (2010).
http://dx.doi.org/10.1002/adfm.200902236
7.
7. R. Steim, F. R. Kogler, and C. J. Brabec, J. Mater. Chem. 20, 2499 (2010).
http://dx.doi.org/10.1039/b921624c
8.
8. S.-I. Na, T. S. Kim, S. H. Oh, J. K. Kim, S. S. Kim, and D. Y. Kim, Appl. Phys. Lett. 97, 223305 (2010).
http://dx.doi.org/10.1063/1.3522893
9.
9. L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575 (2010).
http://dx.doi.org/10.1039/b925382c
10.
10. J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim, and S.-I. Na, Nano Energy 12, 96 (2015).
http://dx.doi.org/10.1016/j.nanoen.2014.12.022
11.
11. R. Steim, S. A. Choulis, P. Schilinsky, and C. J. Brabec, Appl. Phys. Lett. 92, 093303 (2008).
http://dx.doi.org/10.1063/1.2885724
12.
12. L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
http://dx.doi.org/10.1002/adma.200802854
13.
13. Y.-J. Noh, S.-I. Na, and S.-S. Kim, Sol. Energy Mater. Sol. Cells 117, 139 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.05.062
14.
14. J.-S. Yeo, J.-M. Yun, Y.-S. Jung, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, and S.-I. Na, J. Mater. Chem. A 2, 292 (2014).
http://dx.doi.org/10.1039/C3TA13647G
15.
15. S.-H. Kim, C.-H. Lee, J.-M. Yun, Y.-J. Noh, S.-S. Kim, S. Lee, S. M. Jo, H.-I. Joh, and S.-I. Na, Nanoscale 6, 7183 (2014).
http://dx.doi.org/10.1039/c4nr01038h
16.
16. J. Meyer, R. Khalandovsky, P. Görrn, and A. Kahn, Adv. Mater. 23, 70 (2011).
http://dx.doi.org/10.1002/adma.201003065
17.
17. M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
18.
18. H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, T.-Q. Nguyen, G. C. Bazan, and A. J. Heeger, Adv. Mater. 26, 780 (2014).
http://dx.doi.org/10.1002/adma.201302845
19.
19. J. H. Seo, R. Yang, J. Z. Brzezinski, B. Walker, G. C. Bazan, and T.-Q. Nguyen, Adv. Mater. 21, 1006 (2009).
http://dx.doi.org/10.1002/adma.200802420
20.
20. J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, Adv. Mater. 24, 2228 (2012).
http://dx.doi.org/10.1002/adma.201104945
21.
21. G.-Q. Fan, Q.-Q. Zhuo, J.-J. Zhu, Z.-Q. Xu, P.-P. Cheng, Y.-Q. Li, X.-H. Sun, S.-T. Lee, and J.-X. Tang, J. Mater. Chem. 22, 15614 (2012).
http://dx.doi.org/10.1039/c2jm31878d
22.
22. S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, ACS Nano 4, 3169 (2010).
http://dx.doi.org/10.1021/nn100551j
23.
23. Y. Gao, H.-L. Yip, K.-S. Chen, K. M. O'Malley, O. Acton, Y. Sun, G. Ting, H. Chen, and A. K.-Y. Jen, Adv. Mater. 23, 1903 (2011).
http://dx.doi.org/10.1002/adma.201100065
24.
24. J. Liu, Y. Xue, and L. Dai, J. Phys. Chem. Lett. 3, 1928 (2012).
http://dx.doi.org/10.1021/jz300723h
25.
25. J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, Adv. Mater. 23, 4923 (2011).
http://dx.doi.org/10.1002/adma.201102207
26.
26. A. Furst, R. C. Berlo, and S. Hooton, Chem. Rev. 65, 51 (1965).
http://dx.doi.org/10.1021/cr60233a002
27.
27. V. H. Pham, T. V. Cuong, T.-D. Nguyen-Phan, H. D. Pham, E. J. Kim, S. H. Hur, E. W. Shin, S. Kim, and J. S. Chung, Chem. Commun. 46, 4375 (2010).
http://dx.doi.org/10.1039/c0cc00363h
28.
28. H. Wang, J. T. Robinson, X. Li, and H. Dai, J. Am. Chem. Soc. 131, 9910 (2009).
http://dx.doi.org/10.1021/ja904251p
29.
29. C. Nethravathi and M. Rajamathi, Carbon 46, 19941998 (2008).
http://dx.doi.org/10.1016/j.carbon.2008.08.013
30.
30. K.-H. Liao, A. Mittal, S. Bose, C. Leighton, K. A. Mkhoyan, and C. W. Macosko, ACS Nano 5, 1253 (2011).
http://dx.doi.org/10.1021/nn1028967
31.
31. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, J. Am. Chem. Soc. 131, 15939 (2009).
http://dx.doi.org/10.1021/ja907098f
32.
32. M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater. 19, 4396 (2007).
http://dx.doi.org/10.1021/cm0630800
33.
33. Y.-J. Noh, S.-C. Park, I.-T. Hwang, J.-H. Choi, S.-S. Kim, C.-H. Jung, and S.-I. Na, Carbon 79, 321 (2014).
http://dx.doi.org/10.1016/j.carbon.2014.07.073
34.
34. L. Chen, D. Du, K. Sun, J. Hou, and J. Ouyang, ACS Appl. Mater. Interfaces 6, 22334 (2014).
http://dx.doi.org/10.1021/am506326y
35.
35. Y.-J. Jeon, J.-M. Yun, D.-Y. Kim, S.-I. Na, and S.-S. Kim, Sol. Energy Mater. Sol. Cells 105, 96 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.05.024
36.
36. K. C. Kwon, K. S. Choi, and S. Y. Kim, Adv. Funct. Mater. 22, 4724 (2012).
http://dx.doi.org/10.1002/adfm.201200997
37.
37. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, ACS Nano 4, 2689 (2010).
http://dx.doi.org/10.1021/nn1005478
38.
38. Y.-J. Go, J.-M. Yun, Y.-J. Noh, J.-S. Yeo, S.-S. Kim, C.-H. Jung, S.-H. Oh, S.-Y. Yang, D-Y. Kim, and S.-I. Na, Appl. Phys. Lett. 102, 163302 (2013).
http://dx.doi.org/10.1063/1.4803039
39.
39. M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz, A. Elschner, O. Haillant, T. R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D. M. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J.-B. Bonekamp, A. J. J. M. vanBreemen, C. Girotto, E. Voroshazi, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 95, 1253 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.036
40.
40. S. M. Kim, K. K. Kim, Y. W. Jo, M. H. Park, S. J. Chae, D. L. Duong, C. W. Yang, J. Kong, and Y. H. Lee, ACS Nano 5, 1236 (2011).
http://dx.doi.org/10.1021/nn1028532
41.
41. K. C. Kwon, B. J. Kim, J.-L. Lee, and S. Y. Kim, J. Mater. Chem. C 1, 24632469 (2013).
http://dx.doi.org/10.1039/c3tc00046j
42.
42. H. Yamaguchi, J. Granstrom, W. Nie, H. Sojoudi, T. Fujita, D. Voiry, M. Chen, G. Gupta, A. D. Mohite, S. Graham, and M. Chhowalla, Adv. Energy Mater. 4, 1300986 (2014).
http://dx.doi.org/10.1002/aenm.201300986
http://aip.metastore.ingenta.com/content/aip/journal/apl/107/2/10.1063/1.4926799
Loading
/content/aip/journal/apl/107/2/10.1063/1.4926799
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/107/2/10.1063/1.4926799
2015-07-14
2016-12-06

Abstract

We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/107/2/1.4926799.html;jsessionid=q8teeSXBsZo_F93Yh1BwAdG4.x-aip-live-03?itemId=/content/aip/journal/apl/107/2/10.1063/1.4926799&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/107/2/10.1063/1.4926799&pageURL=http://scitation.aip.org/content/aip/journal/apl/107/2/10.1063/1.4926799'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,